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ABSTRACT

To better understand the change in California’s climate over the past century, the long-term variability and

extreme events of precipitation as well as minimum, mean, and maximum temperatures during the rainy

season (fromNovember to March) are investigated using observations. Their relationships to 28 rainy season

average climate indices with and without time lags are also studied. The precipitation variability is found to be

highly correlated with the tropical/Northern Hemisphere pattern (TNH) index at zero time lag with the

highest correlation in Northern California and the Sierra and the correlation decreasing southward. This is an

important finding because there have been no conclusive studies on the dominant climate modes that mod-

ulate precipitation variability in Northern California. It is found that the TNH modulates California

precipitation variability through the development of a positive (negative) height anomaly and its associated

low-level moisture fluxes over the northeast Pacific Ocean during the positive (negative) TNH phase. Tem-

perature fields, especially minimum temperature, are found to be primarily modulated by the east Pacific/North

Pacific pattern, Pacific decadal oscillation, North Pacific pattern, and Pacific–North American pattern at zero

time lag via changes in the lower-tropospheric temperature advections. Regression analysis suggests a combi-

nation of important climate indices would improve predictability for precipitation and minimum temperature

statewide and subregionally compared to the use of a single climate index. While California’s precipitation

currently is primarily projected byENSO, this study suggests that using the combination of the TNHandENSO

indices results in better predictability than using ENSO indices only.

1. Introduction

Climate variability in California has been demon-

strated to be significantly modulated by atmospheric and

oceanic modes/patterns through their influence on at-

mospheric circulations, based on both observational and

numerical studies (Fierro 2014; Wang et al. 2014; Higgins

et al. 2007; Gershunov andBarnett 1998;Wise 2010; Kam

and Sheffield 2016; Carrillo et al. 2017). The climate

variability in California reflects large fluctuations in

temporal and spatial scales for both precipitation and

temperature. For example, California received about

180% of a normal year’s averaged precipitation from

1994 to 1995, yet only received 30%–40% of annually

averaged precipitation from 2011 to 2015. California’s

climate variability is also greatly impacted by its complex

topography and broad latitudinal extent, leading to a

wide spectrum of climates and large differences in annual

precipitation and average temperature among different

geographic regions (Abatzoglou et al. 2009; Guttman and

Quayle 1996). For example, Northern California can
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receive 2 to 4 times more precipitation than Southern

California in a normal year (Jones 2000).

Many atmospheric and oceanic modes exhibit persis-

tent and recurring large-scale patterns with various

temporal and spatial scales. Among those modes, El

Niño–Southern Oscillation (ENSO), the Pacific decadal

oscillation (PDO), the North Atlantic Oscillation

(NAO), and the Arctic Oscillation (AO) have been

extensively investigated as a link to the climate vari-

ability in precipitation and temperature over the

southwest United States, including California, Nevada,

and Arizona (Schonher and Nicholson 1989; Fierro

2014; Higgins et al. 2007; Gershunov and Barnett 1998;

Mo et al. 2009; Mo and Higgins 1998; Hoell et al. 2016;

Kam and Sheffield 2016; Zhu and Li 2016, 2018). ENSO

is one of the climate modes that has received the most

attention when correlating to California precipitation

variabilities. For example, the Climate Prediction Cen-

ter (CPC) has used ENSO as a primary predictor for

their seasonal forecasts whether California would ex-

perience wetter or drier weather conditions (Wise et al.

2015). Most of the studies agree that ENSO has a sub-

stantial influence on precipitation in Southern Cal-

ifornia. However, the impact of ENSO on central and

Northern California is not yet conclusive (Abatzoglou

et al. 2009). Some studies suggested that ENSO has very

little effect on central and Northern California pre-

cipitation (Becker et al. 2009; Schonher and Nicholson

1989; Mo and Higgins 1998; Fierro 2014), while some

studies suggested otherwise (Hoell et al. 2016). For ex-

ample, Schonher and Nicholson (1989) found that pre-

cipitation over central California could be both above or

below normal during El Niño events, and the pre-

cipitation over the Sierra Nevada and Northern Cal-

ifornia has little correlation to ENSO. Similar results

were obtained by Fierro (2014) showing that ENSO had

the maximum impact on the rainy season average (from

October to April) precipitation over Southern Cal-

ifornia and the impact significantly decreases northward.

A recent study conducted by Hoell et al. (2016) found

that California precipitation is sensitive to El Niño in-

tensity. A higher wet probability may occur during

strong El Niño events across the entire state, but pre-

cipitation in Northern California shows no significant

differences between weak andmoderate El Niño events.
The PDO is one of the dominant modes for decadal

variability over the Pacific Ocean that represents signals

from a combination of remote tropical modes and local

North Pacific air–sea interactions (Newman et al. 2016).

Previous studies suggested that the PDO would have

little direct impact on precipitation and temperature

over the southwest United States but can have indirect

influences on the regions through the modulation of

ENSO effects or other internal variability of the mid-

latitude atmosphere (Gershunov and Barnett 1998;

McCabe and Dettinger 1999; Mo et al. 2009; Mills and

Walsh 2013; Newman et al. 2016). For example, a recent

study by Liu et al. (2016) found that the PDO can in-

fluence California precipitation through the modifica-

tion of the frequency and intensity of atmospheric rivers

(ARs), a large-scale process that is often linked to ex-

treme rainfall events in California.

TheNAO is themajor large-scalemode of atmospheric

variability over the extratropical Atlantic Ocean. Al-

though the NAO has been considered to have very small

effects over the western United States (Hurrell and van

Loon 1997; Higgins et al. 2000; Panagiotopoulos et al.

2002; Whan and Zwiers 2017), recent studies by Myoung

et al. (2015, 2017) suggested otherwise. Myoung et al.

(2017) found that snowmelt period and timings of snow-

melt in California, Nevada, Utah, and Colorado are

highly related to the NAO. Myoung et al. (2015) found a

substantial linkage between the NAO and surface air

temperatures over the southwest United States during

the March–June period, and the linkage has become

stronger in the last 30-yr period (1980–2009) compared to

the previous 30-yr period (1950–79). They pointed out that

the NAO modulated the location of upper-tropospheric

anticyclones over the western United States, causing

changes to lower-tropospheric wind directions, sup-

pressing precipitation, and increasing shortwave radia-

tion at the surface. These led to the change of air

temperatures over the southwest United States.

The AO is the dominant mode of variability in the

atmospheric pressures for the Arctic and North Atlantic

oceans and has a very wide temporal spectrum with the

largest effect in the winter (Thompson and Wallace

1998). Because the AO covers a large part of the North

Atlantic Ocean, the AO often shares the same oscilla-

tion phase with the NAO and sometimes causes similar

effects as the NAO on weather across the United States.

It has been found that California tends to experience

drier (wetter) weather conditions at AO positive (neg-

ative) phases (McAfee and Russell 2008; McCabe-

Glynn et al. 2016). It has been suggested that the AO

variability is related to the recent severe drought in

California (Wang et al. 2014).

Except for the aforementioned climate modes that

have been more frequently studied, the linkages be-

tween other climate modes and weather conditions over

the southwest United States, in particular over Cal-

ifornia, are rarely studied. Many prominent Northern

Hemisphere teleconnection patterns, such as the

Pacific–North American pattern (PNA), the east At-

lantic pattern (EA), the west Pacific pattern (WP), the

east Pacific/North Pacific pattern (EPNP), the tropical/
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Northern Hemisphere pattern (TNH), and the polar/

Eurasian pattern (PE), have exhibited important phys-

ical and dynamical features (Barnston and Livezey 1987;

Wettstein andWallace 2010; Cayan and Redmond 1994;

Wise et al. 2015). However, these patterns have received

relatively little attention regarding their potential con-

nections to climate variabilities in California. As there is

still no consensus on what climate modes dominate the

precipitation and temperature variabilities in Northern

California, there is a need to evaluate the linkage be-

tween California precipitation and temperature to not

only the frequently studied climate modes but also the

rarely studied ones.

California produces half of the nation’s fruits and veg-

etables, which makes it the most important agricultural

state in the United States. The water supply in California

heavily relies on accumulated snowpack over high

mountains from previous winter storms and ARs. Thus,

California is extremely vulnerable to global and regional

climate changes because they can amplify fluctuations in

California precipitation amounts and temperature, such

as the severe drought during 2011–14. Furthermore,

California has a very diverse topography, and each of the

different types of topographies responds differently to

climate change. This makes the impact of climate change

on California more unpredictable compared to other

parts of the country. As a result, documenting the spatial

and temporal scales in precipitation and temperature and

understanding the underlying mechanisms for the state

as a whole as well as for its distinct geographic regions are

crucial to water resources planning and ongoing climate-

related policy and regulation making in California. The

objectives of this study are 1) to better understand how

long-term rainy season average precipitation, mean

temperature, minimum temperature, and maximum

temperature have changed over the past century for the

whole state and its 11 geographical subregions; 2) to

conduct statistics on correlations of precipitation, mean

temperature, minimum temperature, and maximum

temperature to a comprehensive set of large-scale climate

indices for the whole state and its 11 geographical sub-

regions; 3) to investigate the predictability of California

precipitation and temperature using significantly corre-

lated climate indices; and 4) to explore the mechanisms

underlying the relationships of precipitation and tem-

perature to climate indices.

2. Data and methodology

a. Data

The time series data of monthly accumulated pre-

cipitation, averagemaximum temperature, averagemean

temperature, and average minimum temperature from

1895 to 2015 used in this study are obtained from the

California Climate Tracker (http://www.wrcc.dri.edu/

monitor/cal-mon/; Abatzoglou et al. 2009). Monthly av-

erage mean temperature is retrieved from the average of

daily mean temperature, which is the average of daily

maximum and minimum temperatures. The dataset of

the above precipitation and temperature is specifically

created for California using a total of 195 stations across

California from the National Weather Service Co-

operativeObserverNetwork (COOP) alongwith gridded

data from the Parameter-Elevation Relationships on In-

dependent Slopes Model (PRISM) database. In addition

to the statewide (CAL) data that are available in the

dataset, data from 11 geographical regions in California

were also available: North Coast (A), North Central (B),

Northeast (C), Sierra (D), SacramentoDelta (E), Central

Coast (F), San Joaquin Valley (G), South Coast (H),

South Interior (I), Mojave Desert, and Sonoran Desert

(K) (Fig. 1). The 11 subregions are divided based on their

geographic features and regional climate variabilities

(Abatzoglou et al. 2009).

The majority of the annual rainfall in California oc-

curs from November through March [Fig. S1 in the

supplemental information (SI)], which is defined as

California’s rainy season in this study. The rainy season

average detrended monthly accumulated precipitation

anomalies Pavg, maximum temperature anomalies Tmax,

mean temperature anomalies Tavg, and minimum tem-

perature anomalies Tmin are used for most of the ana-

lyses conducted in this study. To calculate each monthly

anomaly, we subtract the monthly average based on the

1981–2010 period from each monthly data. After that,

we detrend themonthly anomaly data, and then take the

average of the detrended anomaly data for the months

of November to March, for each year.

Gridded monthly atmospheric data, including geo-

potential heights, winds, total cloud coverage, and cloud

forcing net longwave and shortwave fluxes at the sur-

face, are obtained from NCEP–NCAR reanalysis data-

sets (Kalnay et al. 1996). The data are downloaded from

the Earth System Research Laboratory (ESRL) Physi-

cal Sciences Division (PSD; http://www.esrl.noaa.gov/

psd/data/gridded/data.ncep.reanalysis.derived.pressure.

html). Similar to the land-based data described above,

the anomalies are calculated with respect to the 1981–

2010 period and then detrended and averaged from

November to March to become a rainy season average

detrended dataset.

To explore possible relationships of individual climate

indices and/or their combination to California pre-

cipitation and temperature in the rainy season, a large

set of climate indices (a total of 28) is used in this study
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(see Table 1 for abbreviations and acronyms and Table

S1 in the SI for detailed descriptions). These climate

indices include 12 ENSO-related indices, 4 Atlantic

Ocean–related indices, 2 Pacific Ocean–related indices,

7 teleconnection-related indices, and 3 atmosphere-

related indices. All 28 climate indices are monthly data

initially and are averaged from November to March to

become rainy season average climate indices. Please

note that the TNH index is only available from De-

cember to February. Therefore, the rainy season aver-

age values of the TNH index are represented by the

December–February mean values. Hereafter, ‘‘rainy

season average’’ for climate indices will be omitted for

the sake of brevity.

ENSO is a large, convoluted, and dynamic system, and

its effects on weather and climate vary from one location

to another. Thus, it is believed that using several dif-

ferent indices can be informative and beneficial in

measuring andmonitoring the ENSO state. In this study,

we use 12 of them from the literature (Trenberth 1984;

Wolter and Timlin 1993, 1998, 2011; Ashok et al. 2007;

Weng et al. 2007, 2009; Trenberth and Stepaniak 2001),

including the Southern Oscillation index (SOI), the

multivariate ENSO index (MEI), 8 SSTA-based ENSO

indices [Niño-112, Niño-3.4, Niño-3, Niño-4, El Niño

Modoki A, El Niño Modoki B, El Niño Modoki C, and

El Niño Modoki (EMI)], the Trans-Niño index (TNI),

and the Oceanic Niño index (ONI).

Many studies have found the cross-basin interaction

between theAtlantic and PacificOceans (Wu et al. 2007;

Tootle and Piechota 2006), which implies that themodes

from the Atlantic Ocean may have a potential influence

on California precipitation and temperature. Therefore,

four Atlantic Ocean–related indices are selected, in-

cluding the Atlantic multidecadal oscillation (AMO)

index (Schlesinger and Ramankutty 1994; Enfield et al.

2001), tropical North Atlantic (TNA) index (Enfield

et al. 1999), tropical South Atlantic (TSA) index, and

WesternHemisphere warm pool (WHWP) index (Wang

and Enfield 2001). The first three are based on the area

average of SSTA but over different regions. WHWP is

based on the monthly anomaly of the ocean surface re-

gions warmer than 28.58C in the Atlantic and eastern

North Pacific.

The first Pacific Ocean–related index is the PDO in-

dex. The PDO index is positive (negative) when SSTA is

cool (warm) in the interior North Pacific and warm

(cool) along the Pacific Coast, or when sea level pressure

(SLP) is below (above) average over the North Pacific

(Mantua et al. 1997). The second Pacific Ocean–related

FIG. 1. The 11 subregions (A–K) across the state of California in the dataset from the California

Climate Tracker. Shading indicates the local elevation in feet.
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index is the North Pacific index (NPI), which is used to

quantify decadal variations in the atmospheric circula-

tion over the North Pacific Ocean (Trenberth and

Hurrell 1994).

Seven teleconnection indices for the Northern

Hemisphere extratropics variability are used in this

study, including the PNA, EPNP, NAO, EA, PE, WP,

and TNH indices (Barnston and Livezey 1987). All of

these indices except the NAO index were retrieved from

the CPC (http://www.cpc.ncep.noaa.gov/data/teledoc/

telecontents.shtml). The NAO index used here is the

Hurrell NAO index (station based; retrieved from

https://climatedataguide.ucar.edu/climate-data/hurrell-

north-atlantic-oscillation-nao-index-station-based). The

six indices from the CPC are based on the six leading

rotated modes obtained by applying the rotated princi-

pal component analysis (RPCA) technique to monthly

mean standardized 500-mb height anomalies over the

region of 208–908N with a least squares solution. More

details can be found on the CPC website.

The three atmospheric-related indices are the AO

index, quasi-biennial oscillation (QBO) index, and solar

flux (Solar) index. The AO index is also retrieved from

the CPC. The QBO is the dominant mode for the vari-

ability in the equatorial stratosphere (Baldwin et al.

2001). The Solar index used in this study is obtained

from the National Research Council of Canada. Several

studies have shown that solar cycles are correlated to

modulation of surface temperature and precipitation

(Gray et al. 2010; Maliniemi et al. 2014). For example,

significant differences in winter temperature patterns in

the North Hemisphere have been found during different

phases of the sunspot cycles. It is also suggested that

solar cycles might influence the climate precipitation

through the solar modulation of galactic cosmic rays or

the global electric circuit on cloud cover. There have not

yet been any applications of the Solar index to Cal-

ifornia’s climate. We investigate this index to see if solar

flux affects California precipitation and temperature.

b. Methodology

To understand how California precipitation and

temperature in the rainy season have changed with

time, we perform a long-term trend analysis for rainy

season average monthly accumulated precipitation as

well as averaged monthly minimum temperature, av-

eraged monthly mean temperature, and averaged

monthly maximum temperature using time series data

over the past 121 years (1895–2015). Note that for the

long-term trend analysis, no anomaly and detrended

procedures are performed. A linear regression t test

with 95% confidence interval is used to determine

whether the slope of the regression line differs signifi-

cantly from zero.

The occurrence of extremely dry and wet events is also

investigated during the same period. The 5-month stan-

dardized precipitation index (SPI) is used to identify

different extents of dry and wet scenarios. Extreme wet

and dry events are defined as the 5-month SPI above 2

and below22, respectively; moderate wet and dry events

are from 1 to 2 and from 22 to 21, respectively; and

normal wet and dry events are from 1 to 0 and 21 to 0,

respectively (Yoon et al. 2015).

Using a similar approach to that of Fierro (2014), the

relationships of California Pavg, Tavg, Tmin, and Tmax

over the whole state and its 11 subregions to the 28 cli-

mate indices with and without time lags are investigated

using the standard Pearson’s method (Wilks 2006). The

TABLE 1. Abbreviations and acronyms for 28 climate indices,

including 12 ENSO-related indices, 4 Atlantic Ocean–related in-

dices, 2 Pacific Ocean–related indices, 7 teleconnection-related

indices, and 3 atmosphere-related indices.

No. Climate indices

ENSO-related indices

1 Southern Oscillation (SOI)

2 Multivariate ENSO (MEI)

3 Niño-112

4 Niño-3.4
5 Niño-3
6 Niño-4
7 El Niño Modoki A

8 El Niño Modoki B

9 El Niño Modoki C

10 El Niño Modoki (EMI)

11 Oceanic Niño index (ONI)

12 Trans-Niño index (TNI)

Atlantic Ocean–related indices

13 Atlantic multidecadal oscillation (AMO)

14 Tropical Northern Atlantic (TNA)

15 Tropical Southern Atlantic (TSA)

16 Western Hemisphere warm pool (WHWP)

Pacific Ocean–related indices

17 Pacific decadal oscillation (PDO)

18 North Pacific Index (NPI)

Teleconnection indices

19 Pacific–North American pattern (PNA)

20 East Pacific/North Pacific Oscillation (EPNP)

21 Hurrell station-based monthly North Atlantic Oscillation

(NAO)

22 East Atlantic pattern (EA)

23 Polar/Eurasia pattern (PE)

24 West Pacific pattern (WP)

25 Tropical/Northern Hemisphere pattern (TNH)

Atmospheric-related indices.

26 Arctic Oscillation (AO)

27 Quasi-Biennial Oscillation (QBO)

28 Solar flux (Solar)

1 MARCH 2018 L IU ET AL . 1925

http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based


statistical significance of the correlations is evaluated

using a bootstrap sampling technique over 1000 random

samples and is considered as statistically significant

when the significance level of the correlation coefficients

exceeds 95%. To investigate whether there is a time-

lagged correlation of climate indices to Pavg, Tavg, Tmin,

and Tmax, four season lags are considered for the climate

indices, including one season ahead [September–

October–November (hereafter denoted as 21)], two

seasons ahead [June–July–August (22)], three seasons

ahead [March–April–May (23)], and four seasons

ahead [previous year December–January–February

(24)]. If multiple time lags for one climate index are

found to be significantly correlated to Pavg, Tavg, Tmin, or

Tmax, the final time lag for the climate index is de-

termined using the maximum median values of corre-

lation coefficients among contemporaneity and four

season lags. Because most of the climate index datasets

are only available after 1950, the analyses of relevant

correlation statistics are conducted only for the period of

1950–2015.

To examine the predictability of each significantly

correlated climate index determined by bootstrapped

correlation analyses for Pavg, Tavg, Tmin, and Tmax, sim-

ple linear regression analyses are conducted with indi-

vidual climate index serving as a predictor variable and

either Pavg, Tmax, Tmin, or Tavg serving as a response

variable. In addition, multiple linear regression analyses

are also performed to investigate whether any given

combinations of significantly correlated climate indices

can increase the predictability for Pavg, Tmax, Tmin, and

Tavg. A stepwise regressionmethod is used to develop an

optimal regression equation for Pavg, Tavg, Tmin, or Tmax,

which aims to reduce the set of the predictor variables to

those that are necessary and account for nearly as much

of the variance as is accounted for by the whole variable

set (Draper and Smith 1998). It is assumed that the re-

sponse variable, Pavg, Tavg, Tmin, or Tmax, is a linear

combination of the selected climate indices:

y5b
0
1b

1
x
1
1b

2
x
2
1 . . . , (1)

where y represents response variable of Pavg, Tavg, Tmin,

or Tmax. The xj represents the jth selected significantly

correlated climate index. The bj is the best-fit regres-

sion coefficient of the jth climate index, and bo is the

intercept term.

The linear regression equations are developed using

the data of 1950–90 as the training period and validated

with the data of 1990–2015 as validation period (Wang

et al. 2015; Li andWang 2016, 2018; Luo andWang 2017,

2018; Li et al. 2017; Zhu and Li 2017b). The adjusted

coefficients of determination (R2) values are calculated

for estimating the proportion of the variance in the re-

sponse variables explained by the predictor variables.

The formula for adjusted R2 is as follows:

adjustedR2 5 12

�
SS

resid

SS
total

��
n2 1

n2 d2 1

�
, (2)

where SSresid is the sum of the squared residuals from the

regression, SStotal is the sum of the squared differences

from the mean of the dependent variable (total sum of

squares), d is the total number of predictor variables in

the model (not including the constant term), and n is the

sample size. The larger the adjusted R2 is, the more

variability in the response variables is explained by the

predictor variables. In addition to adjusted R2, the

temporal correlation, root-mean-square error (RMSE),

and the bias are also calculated to quantify the perfor-

mance of the linear regression equations.

To explore the atmospheric circulations that are re-

sponsible for the connections between Pavg, Tavg, Tmin,

or Tmax and the climate indices, composite analyses of

relevant atmospheric variables (i.e., geopotential

heights, winds, total cloud coverage, and cloud forcing

net longwave and shortwave fluxes at the surface) are

conducted in response to different phases of each se-

lected climate index. The atmospheric variables are

composited for both positive and negative values of the

climate index to represent the circulation patterns for

positive and negative phases of the climate index. To

ensure the difference in atmospheric variables between

the positive and negative phases of the climate index is

statistically significant, a two-tailed Student’s t test at the

95% confidence interval is conducted.

A wavelet spectral decomposition technique is used

to identify significant signals within the time series of

Pavg and related climate indices (Torrence and Compo

1998; Fierro 2014). A statistical significance test is also

performed to assess the robustness of the results.

Only a significance level exceeding 95% is considered

as statistically significant. The wavelet spectral de-

composition is performed using the open source code

(downloaded from http://paos.colorado.edu/research/

wavelets/) hosted by the Department of Atmospheric

and Oceanic Sciences at the University of Colorado

Boulder.

3. Results and discussion

a. Long-term trend and extreme events

The first question this paper addresses is how the rainy

season average monthly accumulated precipitation,

minimum temperature, mean temperature, and maxi-

mum temperature, both statewide and over 11 subregions,

1926 JOURNAL OF CL IMATE VOLUME 31

http://paos.colorado.edu/research/wavelets/
http://paos.colorado.edu/research/wavelets/


have changed during the last century. Hereafter,

‘‘rainy season average monthly’’ will be omitted for the

sake of brevity. Figure 2 shows the time series of the

statewide accumulated precipitation, minimum tem-

perature, mean temperature, and maximum tempera-

ture. The regression slopes, which are indicative of the

long-term trends, are presented in Table 2 for the sub-

regions. It can be seen that there is no discernible long-

term trend for statewide precipitation over the past 121

years (Fig. 2a). The 11 subregions present a similar

long-term trend, except the Sacramento Delta region

(E) where the accumulated precipitation has significantly

increased with time (Table 2). Although accumulated

precipitation has not had a discernible long-term trend

from 1895 to 2015, the larger amplitude of accumulated

precipitation tends to occur more frequently after 1967

than before 1967. Figure 3 shows that the standard

deviations (SD) of accumulated precipitation before

1967 are approximately below 0.95 and have been

nearly constant during 1940–67. In contrast, after

1967 the standard deviations increase significantly

with time and then become nearly constant during

2000–15. Therefore, 1967 was identified as a turning

point for statewide accumulated precipitation.

(Fig. 3).

On the other hand, the mean, maximum, and mini-

mum temperatures statewide and for most subregions

show a significant warming trend since 1895, except for

the Sierra (D), San Joaquin Valley (G), and Sonoran

Desert (K) regions for maximum temperature and the

North Coast region (A) for minimum temperature

(Figs. 2b,c,d for statewide; Table 2 for subregions).

Among these three variables, theminimum temperature

has the largest warming trend, except for the North

Coast (A), North Central (B), and Northeast (C) in

which the maximum temperature has the largest

warming trend. This suggests a decreased diurnal tem-

perature variation over central and Southern California

during the past century (Easterling et al. 1997; Donat

et al. 2013), while there is an increased diurnal temper-

ature variation for Northern California. Southern Cal-

ifornia in general has a larger warming trend than

Northern California; in particular, the South Coast re-

gion (H) has the highest warming rate for minimum and

mean temperatures.

As shown in Fig. 3, larger amplitudes (i.e., standard

deviation) in accumulated precipitation have occurred

more frequently since 1967. To further investigate this

finding, we use a 5-month SPI index to identify different

extents of dry and wet scenarios. Figure 4 shows the

FIG. 2. Time series of statewide (a) rainy season average precipitation (inches), (b) rainy season average mini-

mum temperature (8F), (c) rainy season average mean temperature (8F), and (d) rainy season average maximum

temperature (8F) from 1895 to 2015. The red lines are the linear regression line.
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occurrence rates of extreme wet, moderate wet, normal

wet, extreme dry, moderate dry, and normal dry events

before and after 1967 for statewide. It is obvious that the

occurrences of both extreme dry and wet events and

moderate wet events have greatly increased. In contrast,

the occurrences of moderate-dry, normal-wet, and

normal-dry events have consistently decreased during

the same time period. The increased occurrences of

extreme dry and wet events can be seen for most of the

subregions (see Fig. S2 in SI). This indicates that both

intense drought and excessive flooding have increased

statewide and for most subregions since 1967, which is

consistent with previous studies (Langford et al. 2014;

Herring et al. 2014). This situation is projected to con-

tinue in the future based on climate modeling results

(Yoon et al. 2015). This may pose a challenge to water

management due to higher frequencies of intense

drought and excessive flooding events and possible early

melting of snowpack resulting from a significant increase

in minimum temperatures. Note that because the pre-

cipitation and temperature data were obtained from the

California Climate Tracker spanning from 1895 to

present, it is inevitable that the quality of this dataset can

sufferer from smaller number of weather stations

available in the early period, especially prior to 1918. To

check whether the pre-1918 data have a potential impact

on our conclusion, the same analyses are conducted

using the data from 1919 to 2015, and almost the same

conclusion can be drawn (results not shown). Thus, we

may conclude that the data quality prior 1918 does not

have a significant impact on our result.

b. Bootstrapped correlation analysis

To identify the climate indices significantly correlated

with and without lags to Pavg, Tavg, Tmin, and Tmax both

statewide and subregionally, a bootstrapped sampling

analysis over 1000 random samples of those correlations

is conducted. In this analysis, the correlations are con-

sidered statistically insignificant if the 2.5% and 97.5%

percentiles of the correlation values cross the zero cor-

relation line (Fierro 2014). Figure 5a shows the corre-

lation results between statewide Pavg and 28 climate

indices with different time lags. For climate indices with

no lag, the TNH index and the El Niño Modoki C index

are the only two climate indices whose 2.5% and 97.5%

TABLE 2. Regression slopes for rainy season average accumu-

lated precipitation (in.), rainy season average minimum tempera-

ture (8F), rainy season average mean temperature (8F), and rainy

season average maximum temperature (8F) over the 121-yr period

for 11 subregions (A–K) and statewide California (CAL). The

statistically significant slope is bold.

Regions Precipitation Min temp Mean temp Max temp

CAL 0.003 0.017 0.014 0.012

A 20.003 0.005 0.008 0.010

B 0.012 0.012 0.012 0.013

C 0.001 0.013 0.016 0.019
D 0.004 0.019 0.010 0.001

E 0.007 0.018 0.017 0.016

F 0.003 0.018 0.015 0.011

G 0.001 0.020 0.014 0.008

H 0.003 0.026 0.021 0.016

I 20.001 0.014 0.013 0.013

J 0.001 0.019 0.017 0.015
K 0.001 0.023 0.015 0.007

FIG. 3. SD of statewide rainy season average precipitation from 1895 to the year that is

indicated by the x axis. The SD is calculated using the formula
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/n�j

i51895(Xj 2X)
q

, where j is

the given year between 1919 and 2015, Xj is the statewide rainy season average precipitation

from 1895 to the given year j, X is the average of statewide rainy season average precipitation

from 1895 to the given year j, and n is the sample size (the number of years from 1895 to the

given year j). The red arrow denotes the turning point of 1967.
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percentiles of the correlation coefficients do not cross

the zero correlation line, and thus are considered sig-

nificantly correlated to statewide Pavg. If multiple time

lags for one climate index are found to be significantly

correlated to statewide Pavg, the final time lag for the

climate index is determined using the maximummedian

values of correlation coefficients among different time

lags. The same procedure applies to Tavg, Tmax, and Tmin

statewide and all subregions, and a list of significantly

correlated climate indices for Pavg, Tavg, Tmax, and Tmin

statewide and at all the subregions is obtained.

It is shown that the TNH index with no time lag

[denoted as TNH(0)] is highly correlated to Pavg both

statewide and for all subregions. The TNH index has the

highest correlation with Pavg in Northern California and

the Sierra, and the correlation decreases southward (re-

fer to Figs. S3–S7 in SI for all subregions and time lags).

The Pavg over Northern California (A, B, and C) is sig-

nificantly correlated tomost of theENSO-related indices

3 to 4 seasons ahead. For example, theElNiñoModoki B

(24) has the median correlations of ;0.23 for Pavg over

Northern California. The Pavg over central and Southern

California (F, G, H, I, J, and K) are highly correlated to

most of the ENSO-related indices 0 to 2 seasons ahead.

Among the ENSO-related indices, the Niño-112 (0) and

SOI(21) have the largest correlation magnitudes over

the subregions in central California and Southern Cal-

ifornia, respectively. The longer time lag of the ENSO-

related indices forNorthernCalifornia than for Southern

California is expected as Northern California is farther

away from the tropics than Southern California. ThePavg

over the North Coast (A), North Central (B), Sierra (D),

and the Central California subregions (E and F) is also

significantly correlated with the PE index one season

ahead. No correlations are found for the TNA, EA, or

solar indices to Pavg in any subregions.

The TNH has been received little attention pre-

viously. The above results show that the connection of

the TNH(0) index with California precipitation is robust

for the long period since 1950. In particular, stronger

correlation of the TNH(0) in Northern California than

in Southern California is important because there have

been no conclusive studies on the dominant climate

modes that modulate precipitation variability during the

rainy season in Northern California. To further in-

vestigate the connections between the TNH(0) index

and extreme precipitation (dry or wet) events, the time

series of the TNH(0) index and statewide Pavg are pre-

sented in Fig. 6. Please note that the signs of the TNH(0)

have been switched in Fig. 6 for a simple comparison.

The selection of extreme wet and dry events is based on

the top and bottom 15% percentiles of Pavg, re-

spectively. Figure 6a shows that 1951, 1955, 1968, 1977,

1982, 1985, 1992, 1994, and 1997 were extremely wet

years, in which Pavg correlates well with large positive

values of the TNH(0) index in these years, with the ex-

ception of 1951. For the extreme dry years, including

1956, 1963, 1975, 1976, 1989, 1993, 2006, 2012, and 2014,

Pavg also correlates well with large negative values of the

TNH(0) index with the exception of 1975 in which the

TNH(0) index had a very small negative value. Similar

results can be obtained from the statewide precipitation

averaged over December to February and the TNH(0)

index (Fig. 6b), which indicates that correlation between

the California precipitation and the TNH(0) index is

robust and is not sensitive to the definition of the

rainy season.

Different from Pavg, statewide and most subregional

Tmin is highly correlated to the NPI, PDO, PNA, and

EPNP indices with no time lag, except for the PNA(0)

index in the San Joaquin Valley region (G) (Fig. 5b;

refer to Figs. S8–S12 in SI for all subregions and time

lags). The Tmin is also significantly correlated to mul-

tiple ENSO-related indices 0 to 2 seasons ahead

statewide and for many subregions. The correlation

magnitudes of Tmin to the PDO, NPI, PNA, and

EPNP indices are the highest in the coastal regions

and decrease toward inland. No robust correlations

are found for Tmin to the El Niño Modoki C, TSA,

PE, AO, and QBO indices statewide and for any

subregions.

Similar to Tmin, Tavg statewide and in most subregions

is also found to be significantly correlated to the PDO,

NPI, PNA, and EPNP indices with no time lag

(Figs. S13–S17), except for the PNA(0) index in the two

desert regions (J and K) and the PDO(0) index in the

Mojave Desert regions (J). However, the magnitudes of

correlation coefficients for those climate indices are

smaller than those for Tmin.

FIG. 4. Occurrence rates (number per month in %) of extreme

wet (Ext-wet), moderate wet (Mod-wet), and normal wet (Nor-

wet) as well as extreme dry (Ext-dry), moderate dry (Mod-dry),

and normal dry (Nor-dry) events based on the 5-month SPI for

statewide California for before and after 1967. For the results of

subregions please refer to Fig. S2.
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While Tmax are also significantly correlated with the

PDO, NPI, PNA, and EPNP indices with no time lag,

Tmax has the lowest median correlation coefficients for

those climate indices among the three temperature fields

(Figs. S18–S22). In addition, Tmax is significantly corre-

lated with fewer climate indices compared to the other

two temperature fields.

Because some of the climate indices are retrieved

from SST, they may contain a significant trend during

1950–2015. Since precipitation and temperature fields

used in this study are detrended, we would like to ensure

that the aforementioned correlation results are robust

regardless of whether the climate indices are detrended

or nondetrended. We perform a linear regression t test

with 95% confidence interval to identify which SST-

retrieved climate indices have a long-term trend, and six

of them are found, including the TNA, TSA, WHWP,

Niño-112, Niño-4, and El Niño Modoki C indices (re-

sults not shown). We detrend these six climate indices

and perform the bootstrapped correlation analysis for

these detrended climate indices. Results indicate that

for Pavg, except for Niño-112(0) and TNA(0), the other

four indices have no significant difference in median

correlation coefficients between detrended and non-

detrended climate indices (results not shown). The me-

dian correlation coefficients of detrended Niño-112(0)

and detrended TNA(0) to Pavg increase considerably for

Northern California and central California compared to

FIG. 5. Box-and-whisker plots of 1000 samples’ bootstrapped Pearson’s correlation between (a) Pavg and (b) Tmin

and 28 rainy season average climate indices with time lags from 0 to 4 during 1950–2015 for statewide California.

The red line within the box depicts the median correlation. The blue box shows the lower and upper quartile (25%

and 75%). The 2.5th- and 97.5th-percentile correlation values are shown with the end bars of the dotted lines

outside the blue box. The x axis indicates 28 rainy season average climate indices, and the y axis shows the cor-

relation coefficients. For the results of all subregions please refer to Figs. S3–S22.
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nondetrended Niño-112(0) and nondetrended TNA(0),

respectively. However, even though detrended TNA(0)

and detrended Niño-112 (0) have higher correlation

coefficients to Pavg compared to nondetrended ones,

their correlation coefficients are still lower than that of

nondetrended TNH(0) for statewide and all the sub-

regions. Similar results can be obtained for Tavg that all

six climates indices have no significant difference in

median correlation coefficients between detrended and

nondetrended climate indices. Therefore, the conclu-

sion that we obtain from the bootstrapped correlation

analysis does not change regardless of whether climate

indices are detrended or nondetrended.

c. Linear regression analysis

Now that we know which climate indices are signifi-

cantly correlated to Pavg, Tmin, Tmax, and Tavg in Cal-

ifornia based on the above analyses, the next step is to

examine the predictability of those climate indices for

Pavg, Tmax, Tmin, and Tavg. To accomplish this, we con-

duct simple linear regression and calculate an associated

adjusted R2 using the data in the training period (1950–

1990). Each significantly correlated climate index ob-

tained from bootstrapped correlation analyses is used

as a predictor variable and either Pavg, Tmax, Tmin, or

Tavg is used as a response variable aiming to build the

simple linear equations. Note that adjustedR2 instead of

R2 is used in this study because the former can account

for the number of predictor variables in the model.

Table 3 shows that for Pavg, the TNH(0) index has ad-

justed R2 of 32% statewide and 14%–31% for all sub-

regions, except for K (refer to Table S2 for completed

results). In other words, the TNH(0) index may explain

about 32%ofPavg variation statewide and 14%–31% for

the subregions, except for K. In addition, the TNH(0)

index has higher adjustedR2for Northern California and

the Sierra than for Southern California, which suggests

the TNH(0) index may have the highest predictability

for Pavg in Northern California and the Sierra, and the

predictability of the TNH(0) index for Pavg would de-

crease southward. Other indices have much lower ad-

justed R2 in Northern and central California compared

to the TNH(0) index. This suggests that the TNH(0)

pattern may be the most dominant synoptic mode that

modulates California precipitation, especially for

Northern California and the Sierra. The PE(21) index

has a similar latitude dependence as the TNH(0), al-

though its associated adjusted R2 is much smaller than

that of the TNH(0). In contrast, the SOI(21) has the

highest adjusted R2 over the southernmost subregions

(I, J, and K) and the adjusted R2 decreases with in-

creasing latitudes, which is consistent with previous

studies (Becker et al. 2009; Fierro 2014; Schonher and

Nicholson 1989; Mo and Higgins 1998).

For temperature fields of Tmin (Table 3b), the NPI(0)

generally has the largest adjusted R2 values both state-

wide and for most subregions. The adjusted R2 values

for the PDO(0), EPNP(0), and PNA(0) indices are

slightly smaller than that of the NPI(0), but in general

they are of comparable magnitudes. In addition, the

adjusted R2 values for the EPNP(0), PDO(0), NPI(0),

and PNA(0) indices are the highest at the coastal sub-

regions and decrease toward inland, which is consistent

with the results from bootstrapped correlation analysis.

Similar results can be obtained for Tmax and Tavg. Nev-

ertheless, the adjusted R2 values for Tmax and Tavg are

smaller than that for Tmin (Table S2 in SI).

To further investigate whether any given combina-

tions of the significantly correlated climate indices can

improve the predictability for Pavg, Tmax, Tmin, and Tavg,

stepwise multiple linear regression analyses are con-

ducted forPavg,Tmax,Tmin, andTavg statewide and for 11

subregions using the data in the training period (1950–

90). Table 4a shows that a combination of significantly

FIG. 6. Time series of the statewide precipitation (blue line) and

the TNH index with sign switched (red line) averaged over

(a) November to March and (b) December to February. The blue

dots indicate the extreme dry and wet events determined using the

bottom and top 15th percentile of average precipitation. The red

dots indicate the corresponding TNH index values for those

extreme events.
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correlated climate indices improves the predictability of

Pavg for statewide andmost of the subregions, except for

the SonoranDesert regions (K) where only the SOI(22)

index is included as the predictor variable in the equa-

tion. The TNH(0) index is included as one of the pre-

dictor variables in all multiple regression equations

except for the Sonoran region (K). In addition to the

TNH(0) index, the PE(21) index is also included as

another predictor variable for Pavg in Northern Cal-

ifornia (A and B), central California (E and F), the Si-

erra (D), and statewide. For Pavg in Southern California,

in addition to the TNH(0) index, the SOI(22) is also

included as another predictor in the regression equa-

tions. The adjusted R2 values for the multiple linear

regression equations with a combination of the climate

indices range from 32% to 60%, which are much higher

than those from any single climate index (refer to Table

S3 for completed results).

Similar to Pavg, a combination of the climate indices is

suggested as predictor variables in the equations for

Tmin statewide andmost of the subregions, except for the

Sierra (D) where only the NPI(0) is included as a pre-

dictor variable in the equation. For the other regions,

either the NPI(0), EPNP(0), or PNA(0) indices are of-

ten included as one of the predictor variables in the

multiple linear regression equations. The adjusted R2

values of the multiple linear regression equations with a

combination of the climate indices range from 27% to

72%, which are much higher than those from any of the

single climate index. A similar result can be obtained for

Tmax and Tmin (Tables S4–S6 in SI).

While the improved predictability can be obtained

from a combination of significantly correlated climate

indices, the equations developed in this study are not

intended for practical prediction because the ultimate

equations that can be used for operational purposes

require throughout testing and verification/validation,

which is beyond the scope of this paper. The primary

purpose of this study is to identify/screen out which

climate indices could be potentially used for predication

and to investigate whether a combination of these cli-

mate indices can provide a better predictability than a

single climate index for precipitation and temperature.

Although the CPC of NOAA only uses ENSO as the

primary factor to project California’s precipitation, our

study suggests that the combination of the TNH index

and ENSO indices would provide a better prediction for

California precipitation than using ENSO indices only.

Note that the above multiple linear regressions are

built based on the data of 1950–90 (training period).

There is a need to validate whether these equations can

still provide reasonable estimates ofPavg,Tavg,Tmax, and

Tmin using other independent data (validation period:

1990–2015). Figure 7a and Table 5a show that the mul-

tiple linear regression equations with a combination of

the climate indices can provide reasonable estimates of

TABLE 3. The adjusted R2 values (%) of linear regression models between individual climate index and Pavg, Tmin, Tavg, and Tmax for

selected climate indices and subregions during the period of 1950–90 (training period). Please refer to Table S2 in the supporting in-

formation for completed results. The number in parentheses indicates the time lags for the climate index with 0 for no time lag,21 for one

season ahead, 22 for two seasons ahead, 23 for three seasons ahead, and 24 for four seasons ahead.

Regions CAL North Central (B) Sierra (D) Sacremento-Delta (E) San Joaquin Valley (G) South Coast (H)

Pavg

SOI(21) 8 1 2 23 29

PE(21) 13 16 12 6 1

TNH(0) 32 31 27 26 18

Tmin

PDO(0) 12 11 5 6 28

NPI(0) 23 23 14 12 36

PNA(0) 7 8 2 0 21

EPNP(0) 19 11 15 24 35

Tavg

PDO(0) 12 22 9 9 32

NPI(0) 18 26 13 13 33

PNA(0) 11 22 8 6 33

EPNP(0) 8 12 15 17 11

Tmax

PDO(0) 6 14 4 4 23

NPI(0) 7 11 3 4 20

PNA(0) 8 17 6 5 30

EPNP(0) 0 4 4 2 0
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Pavg for the training period of 1950–90 with temporal

correlations of 0.59–0.81, RMSE of 0.23–1.98, and bias

of ;0 for statewide and the subregions (please refer to

Table S7 and Fig. S23 for completed results). For the

validation period of 1990–2015, reasonable estimates of

Pavg are also obtained with temporal correlation of 0.43–

0.68, RMSE of 0.4–2.39, and bias of 20.5–0.1.

For Tmin, the multiple linear regression equations

with a combination of the climate indices can also re-

produce the observed Tmin for 1950–90 with temporal

correlations of 0.55–0.87, RMSE of 0.87–1.45, and bias

of ;0 for statewide and subregions (Fig. 7b, Table S7,

and Fig. S24). The estimates of Tmin for the validation

period of 1990–2015 are also reasonably provided. The

only exception is for the Sierra (D) where the temporal

correlation is 0.37, which is statistically insignificant.

In addition, the multiple linear equations with the

combined climate indices can provide reasonable esti-

mates of Tmax for the training period at some of the

subregions (Table 5, Table S7, and Fig. S26). Never-

theless, they have low predictability for Tmax for many

subregions during the validation period. Similar re-

sults can also be obtained for Tavg over the statewide,

Northern Central (B), Sierra (D), and South Coast (H)

regions.

To investigate whether the low predictability for Tmax

and Tavg during the validation period is caused by the

long-term trend inherited from the SST-retrieved cli-

mate indices, such as TNA and TSA.We detrend the six

climate indices from 1950 to 2015 and use the same

procedure to generate the multiple linear regressions

with a combination of the climate indices. Similar low

predictability of Tmax and Tavg during the validation

period is obtained (results not shown). This suggests

that the low predictability of Tmax and Tavg is not caused

by whether the climate indices are detrended or

nondetrended.

In fact, compared to Tmin, the much lower pre-

dictability forTmax andTavg is not surprising because the

median correlation coefficients and adjusted R2 values

for each climate index are much lower than those for

Tmin. There are two possible reasons for the low pre-

dictability of Tmax and Tavg. First, the relationships of

Tavg and Tmax to the climate indices might not be linear;

they could be nonlinear, which does not satisfy the as-

sumption that we used for our linear regression analysis.

TABLE 4. Multiple linear regression equations and associated adjusted R2 values (%) for Pavg, Tmin, Tavg, and Tmax for selected sub-

regions and statewideCalifornia for the period of 1950–90 (training period). Please refer to Tables S3–S6 in the supporting information for

completed results. The number in parentheses indicates the time lags for the climate index.

Regions

No. of

predictors Multiple linear equations Adjusted R2

Pavg

CAL 2 20.31 2 0.60 3 PE(21) 2 0.96 3 TNH(0) 40

B 3 20.59 1 1.32 3 El Niño Modoki B(24) 2 1.39 3 PE(21) 2 2.35 3 TNH(0) 52

D 2 20.42 2 1.12 3 PE(21) 2 1.71 3 TNH(0) 34

G 2 20.25 2 0.04 3 SOI(21) 2 0.59 3 TNH(0) 41

H 3 20.20 2 0.06 3 SOI(21) 1 0.63 3 EPNP(0) 2 0.72 3 TNH(0) 45

Tmin

CAL 2 22.55 2 0.22 3 NPI(0) 1 0.75 3 EPNP(0) 32

B 3 22.65 1 0.37 3 WHWP(22) 2 0.78 3 NPI(0) 2 1.94 3 PNA(0) 45

E 2 23.18 1 0.91 3 EPNP(0) 2 0.86 3 TNH(0) 28

G 2 23.16 1 1.14 3 EPNP(0) 2 0.93 3 TNH(0) 39

H 6 24.15 1 0.85 3 MEI(22) 2 0.65 3 Niño 1 1 2(-1) 2 0.18 3 NPI(0) 1 0.80 3 EPNP(0) 2 0.80

3 WP(0) 1 0.0005 3 Solar(24)

72

Tavg

CAL 2 21.91 1 1.80 3 AMO(22) 2 0.27 3 NPI(0) 25

B 2 21.68 1 1.72 3 TNA(21) 2 0.30 3 NPI(0) 34

E 1 22.47 1 0.92 3 EPNP(0) 16

G 1 22.00 1 1.01 3 EPNP(0) 17

H 4 23.47 1 0.90 3 MEI (-2) 2 1.29 3 Niño 1 1 2(21) 2 0.37 3 NPI(0) 1 0.0008 3 Solar(24) 53

Tmax

CAL 3 21.40 1 2.78 3 TNA(21) 1 0.84 3 PNA(0) 2 1.27 3 WP(0) 30

B 2 20.97 1 1.15 3 PNA(0) 1 0.99 3 PE(21) 25

E 1 21.91 1 2.53 3 TNA(21) 8

G 1 20.97 1 2.64 3 TNA(21) 7

H 1 21.65 1 1.30 3 PNA(0) 30
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Second, the key or the dominate climate indices related

to Tmax and Tavg might not be included in these 28 cli-

mate indices. Further study is required to find the key

climate indices for Tmax and Tavg, and they are outside

the scope of this study.

d. Atmospheric processes for linkages between
climate indices and California temperature/
precipitation

To understand how the TNH(0) pattern influences

precipitation over California, we perform a composite

analysis of various rainy season average detrended at-

mospheric variable anomalies for positive and negative

TNH(0) index phases. Hereafter, ‘‘rainy season average

detrended’’ will be omitted for the sake of brevity. The

composites of rainy season average long-term means

(1981–2010) for 500- and 950-hPa geopotential heights

and winds, 950-hPa water vapor mixing ratio, and total

cloud fraction are presented in Fig. 8 for a reference.

The composites of geopotential height anomalies in

Fig. 9a show a deep, east–west dipole comprising a

strong positive height anomaly, accompanied by an an-

ticyclonic circulation anomaly, anchored to the north-

west of California, and a strong negative height

anomaly, accompanied by a cyclonic circulation anom-

aly, sitting over eastern Canada during positive TNH(0)

index. The strong positive height anomaly strengthens

the climatological mean ridge (Fig. 8a), which reduces

the likelihood of winter storms reaching and affecting

California, and deflects them toward the north and south

(Wang et al. 2014; Chang et al. 2015). This can be seen in

the composite of total cloud fraction anomaly in which

large positive cloud fraction anomalies are located over

western Canada andMexico, while negative water vapor

mixing ratio and total cloud fraction anomalies are lo-

cated over California (Figs. 9d,g). In addition, the wind

anomalies associated with height anomalies extend from

the middle levels down to the low levels (Fig. 9g). The

low-level northerly wind anomalies between the dipole

of height anomalies advect more dry air from higher

FIG. 7. The time series of the observed (black line) and estimate (blue line for the training period; red line for the

validation period) (a) Pavg and (b) Tmin for statewide and selected subregions. Please refer to Figs. S23–S26 for

completed results.

1934 JOURNAL OF CL IMATE VOLUME 31



latitudes to California, further discouraging the forma-

tion of clouds and precipitation (Fig. 9g). In contrast,

during negative TNH(0) index, a strong negative height

anomaly, accompanied by a cyclonic circulation anom-

aly, is centered over the Gulf of Alaska, and another

negative height anomaly is located from the Gulf of

Mexico northeastward across the western North At-

lantic (Fig. 9b). Furthermore, a strong positive height

anomaly is located around Hudson Bay throughout

eastern Canada. This synoptic pattern favorably steers

winter storms across the western United States, which

brings in large positive cloud and precipitation anoma-

lies, in particular, to Northern California, Oregon, and

Washington (Fig. 9e), where the 500-hPa southwesterly

wind anomaly reaches a maximum near the West Coast

(Fig. 9b). In addition, the low-level southerly wind

anomalies counteract the northwesterly winds associ-

ated with the climatological mean ridge (Figs. 9h and

8b), which advects less dry air from higher latitudes

southward and more moist air from the Pacific Ocean

into the westernUnited States, promoting the formation

of clouds and precipitation. It is worth mentioning that

the water vapor and total cloud fraction anomalies are

also more pronounced in Northern California than

Southern California during the negative TNH(0) phase.

This might explain why the TNH(0) index is better

correlated to the variability of Pavg in Northern Cal-

ifornia than in SouthernCalifornia. The aforementioned

differences between positive and negative TNH(0)

phases are all statistically significant as shown in

Figs. 9e,f,i.

Temperature fields, including Tavg, Tmax, and Tmin,

can be modulated by the atmospheric modes in two

ways. First, the wind effect: the modes can modulate

geopotential heights and associated wind fields to

transport either warmer air from lower latitudes or

colder air from higher latitudes to local areas (Myoung

et al. 2015; Bond et al. 2015). Second, the cloud radiation

effect: the modes can modulate the cloud formation,

which affects Earth’s radiation balance via the cloud

albedo and cloud greenhouse forcings (Rossow and

Lacis 1990; Rossow and Zhang 1995; Zhu and Li 2017a).

The contributions of these two effects to temperature

fields can either be counteracted or reinforced depend-

ing on the synoptic environment. The analyses here fo-

cus on the low-level geopotential heights and winds, as

well as total cloud fraction and net cloud forcing that are

associated with the NPI(0). Figure 10 shows that during

TABLE 5. The adjusted R2 (%), temporal correlation (CC), RMSE, and bias between the observed and estimated Pavg, Tmin, Tavg, and

Tmax obtained using data during 1950–90 (training period) and during 1990–2015 (validation period) for statewide and selected subregions.

Please refer to Table S7 in the supporting information for completed results. The statistically significant CC is bolded.

Regions R2 (training) R2 (validation) CC (training) CC (validation)

RMSE

(training)

RMSE

(validation)

Bias

(training)

Bias

(validation)

Pavg

CAL 40 45 0.65 0.58 0.84 0.88 0.00 20.01

B 52 47 0.74 0.54 1.66 2.22 0.00 20.50

D 34 28 0.61 0.51 1.70 1.68 0.00 20.07

G 41 44 0.66 0.62 0.62 0.67 0.00 0.10

H 45 26 0.70 0.50 0.97 1.44 0.00 20.15

Tmin

CAL 32 55 0.60 0.76 1.02 0.98 0.00 0.35

B 45 37 0.70 0.60 1.00 1.25 0.00 20.09

E 28 59 0.56 0.79 1.16 1.15 0.00 0.50

G 39 62 0.65 0.81 1.08 1.09 0.00 0.55

H 72 64 0.87 0.68 0.59 0.97 0.00 0.24

Tavg

CAL 25 3 0.53 0.32 1.11 1.26 0.00 0.11

B 34 10 0.61 0.38 1.02 1.34 0.00 20.21

E 16 45 0.42 0.68 1.13 1.13 0.00 0.57

G 17 46 0.44 0.70 1.17 1.14 0.00 0.64

H 53 24.3 0.76 0.06 0.84 1.58 0.00 0.33

Tmax

CAL 30 15 0.60 0.37 1.37 1.61 0.00 20.41

B 25 10 0.54 0.22 1.53 1.96 0.00 0.29

E 8 0 0.31 0.19 1.64 1.75 0.00 20.04

G 7 21 0.31 0.17 1.74 1.75 0.00 0.01

H 30 24 0.56 0.02 1.37 1.55 0.00 20.07
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negative NPI(0), a similar synoptic pattern is observed,

which comprises a negative height anomaly positioned

over the northeastern Pacific Ocean. The cyclonic cir-

culation anomalies associated with the negative height

anomaly weaken the anticyclonic circulation associated

with the climatological mean ridge, which reduces the

cold advection from higher latitudes to California, re-

sulting in increased temperature fields (i.e., Tmin) at low

levels in California. In contrast, during positive NPI

(0), a strong positive height anomaly anchors over the

northeastern Pacific Ocean, inducing anomalous north-

westerly winds around California. The northwesterly

wind transports cold air into the region, reducing low-

level temperature fields. This might also explain the dif-

ferent influence of the NPI(0) patterns on temperature

fields between the coastal areas and the inland areas,

because the cold/warm advection has the maximum

impacts on the coastal regions, and the impact decreases

when advection is farther inland in California owing to

surface friction.

For cloud radiation effects, the NPI(0) modes exhibit

statistically significant differences in total cloud frac-

tion anomalies between positive and negative phases

(Figs. 10d,e,f). However, their associated net cloud forc-

ings show no statistically significant differences between

positive and negative phases (figures not shown). This

suggests that the cloud radiation effects associated with

the NPI(0) on California surface temperature fields

would not be significant. Similar mechanisms can be

applied for the other three important climate indices,

the EPNP(0), NPI(0), and PNA(0) indices (Figs. S27

and S28 in the SI). We may conclude that the EPNP(0),

PNA(0), NPI(0), and PDO(0) patterns modulate the

temperature fields, in particular Tmin, via changes to

FIG. 8. The composite of rainy seasonaverage long-termmean for (a) 500-hPa geopotential height (shading;m) andwinds (windarrows;m s21),

(b) 950-hPa geopotential height (shading; m) and winds (wind arrows, m s21), (c) 950-hPa water vapor mixing ratio (shading; g kg21)

and wind (wind arrows), and (d) total cloud fraction (%).
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low-tropospheric wind directions and associated warm/

cold advections rather than via changes to cloud radia-

tion effects.

e. Wavelet spectral decomposition

To identify significant signals within the time series

of Pavg, wavelet power spectra are computed for Pavg

spanning the period of 1895–2015. Figure 11 shows that

during the time period of 1940–67, there were several

short time periods with strong 2–4- and 4–8-yr as well as

10–16-yr signals for Northern and central California

(A, B, C, D, E, and F), but no significant signals for

Southern California (G, H, I, J, and K; see Fig. S29

for all subregions). Since 1967, the occurrence of strong

2–8-yr signals has become more frequent, particularly

since 1980 in Southern California. In addition, the

strong 10–16-yr signals have continued to appear for

approximately 40 years for most subregions in North-

ern and central California and for about 30 years

in the subregions of Southern California (G, H, U, J, and

K). Note that the power values are only statisti-

cally significant outside the cone of influence and are

FIG. 9. The composite of rainy season average detrended (a)–(c) 500-hPa geopotential height anomalies (shading; m) and wind

anomalies (wind arrows), (d)–(f) total cloud fraction anomalies (%), and (g)–(i) 950-hPa water vapor mixing ratio anomalies (shading;

g kg21) and wind anomalies (wind arrows) for (left columns) the positive TNH index and (center columns) the negative TNH index. (right

column) The differences in composite between the positive and negative TNH index. The thick black contours represent the 95% con-

fidence level for the shaded fields, and the bolded wind vectors represent the 95% confidence level for the wind difference.
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highlighted by the 95% confidence interval (thick black

contours).

We also apply the wavelet spectral technique to

decompose the climate indices that are important to

Pavg, including the TNH(0), MEI(0), Niño-3.4(0), and
Niño-112(0) indices (Fig. 12). Note that for the cli-

mate indices, the wavelet spectral decomposition is

conducted for the period of 1950 to 2015 due to limited

data availability. It is shown that the TNH index has

strong 10–16-yr signals during 1960–91 and strong 2–3-yr

signals during 1955–58 (Fig. 12a). Both theMEI and Niño-
3.4 indices have a very similar pattern with strong 2–4- and

4–6-yr signals during 1967–72, 1982–90, and 1995–2000

(Figs. 12b,c), which is consistent with the results from

Torrence and Compo (1998). The Niño-112 index has

strong 2–8-yr signals, which occurred at the same time as

the MEI and the Niño-3.4 (Fig. 12d).

4. Concluding remarks

To better understand the change in California’s cli-

mate over the past century, the long-term climate vari-

ability and extreme events of precipitation as well as

minimum, mean, and maximum temperatures during

the rainy season are investigated. The rainy season is

defined as November to March in this study. Their re-

lationships to 28 rainy season average climate indices

with and without time lags are also studied. The analyses

are based on the observational data from 1895 to 2015,

which are in the form of rainy season average detrended

monthly accumulated precipitation anomalies Pavg, av-

eraged detrended monthly maximum temperature

anomalies Tmax, averaged detrended monthly mean

temperature anomalies Tavg, and averaged detrended

monthly minimum temperature anomalies Tmin both

statewide and for 11 geographical subregions. All of 28

climate indices are monthly data initially and are aver-

aged from November to March to become rainy season

average climate indices. Hereafter, ‘‘rainy season aver-

age’’ for climate indices will be omitted for the sake of

brevity.

The present study shows that Pavg for most of the

subregions and the entire state is highly correlated with

the TNH index at zero time lag. The TNH(0) index has

the highest correlation with Pavg in Northern California

and the Sierra, and the correlation decreases south-

ward. This suggests that the TNH(0) index could be a

very useful index for predicting the trend of Pavg and

extreme events in California, especially in Northern

California and the Sierra. This is a valuable finding

because there have been no conclusive studies on the

dominant climate modes that modulate precipita-

tion variability during the rainy season in Northern

California.

FIG. 10. The composite of rainy season average detrended (a)–(c) 950-hPa geopotential height anomalies (shading; m) and wind

anomalies (wind arrows) and (d)–(f) total cloud fraction anomalies (%) for the (left) positive NPI, (center) negative NPI, and (right) their

difference. The thick black lines represent the 95% confidence level for the shaded fields, and the black bolded wind vectors represent the

95% confidence level for the wind difference. For the results of the EPNP, PDO, and PNA indices, please refer to Figs. S27 and S28.
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The high correlation between the TNH(0) pattern and

Pavg can be attributed to the development of a strong

positive height anomaly and negative height anomaly

over the northeast Pacific Ocean at positive and negative

TNH(0) phases, respectively. The strong positive height

anomaly during positive TNH(0) phase strengthens the

climatological mean ridge, which reduces the likelihood

of winter storms reaching and affecting California. The

northerly wind anomalies associated with the positive

height anomaly advect more dry air from higher latitudes

to California. Both conditions are unfavorable for cloud

formation and precipitation, causing decreased pre-

cipitation in California. In contrast, the negative height

anomaly at negative TNH(0) phase encourages winter

storms to move across the western United States, and

their associated southerly wind anomalies to transport

less dry air from higher latitudes and more moist air from

the Pacific Ocean to California. These conditions are fa-

vorable for cloud formation and precipitation, resulting

in increased precipitation.

In addition to the TNH(0) index, Pavg over central

California and Southern California is also highly related

to ENSO, which is represented by the Niño-112(0)

indices and the SOI(21). Their correlations increase

with decreasing latitudes, which is consistent with pre-

vious studies.

Temperature fields, in particular Tmin, for 11 geo-

graphic subregions and statewide are primarily modu-

lated by the EPNP, PDO, PNA, and NPI patterns at

zero time lag. All of the patterns have the largest influ-

ence on temperature fields in the coastal regions, and the

influence decreases inland. The EPNP(0), PDO(0),

PNA(0), and NPI(0) patterns modulate the temperature

fields (Tavg, Tmax, and Tmin) via the wind effect. In pos-

itive EPNP(0), negative NPI(0), positive PDO(0), or

positive PNA(0) phases, the low-level cyclonic wind

anomalies transport more warm air from lower latitudes

and less cold air from higher latitudes into California,

resulting in increased surface temperatures. In contrast,

in negative EPNP(0), positiveNPI(0), negative PDO(0),

or negative PNA(0) phases, an opposite process (i.e.,

low-level anticyclonic wind anomalies transporting

more cold air from higher latitudes into California) re-

sults in decreased surface temperatures.

The results presented in this study show that for each

subregion and statewide, Pavg, Tmax, Tavg, and Tmin are

FIG. 11. The wavelet power spectrum of Pavg for statewide California (CAL) and selected subregions with x axis

indicating time and y axis indicating period. The contour levels are chosen so that 75%, 50%, 25%, and 5% of the

wavelet powers are above their corresponding levels. Therefore, the color bars are different for different sub-

regions. The cross-hatched region is the cone of influence, where zero padding has reduced the variance. The black

contour is the 5% significance level, using a white-noise background spectrum. For the results of all subregions,

please refer to Fig. S29.
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modulated by multiple climate indices. The regression

analyses suggest that a combination of important cli-

mate indices would improve the predictability of pre-

cipitation and minimum temperature statewide and for

most of the subregions compared to the use of a single

climate index. Nevertheless, the predictability of

maximum and mean temperatures is relatively low re-

gardless of using a single or a combination of the cli-

mate indices.

Long-term trend analysis shows that rainy season

average accumulated precipitation does not have a dis-

cernible long-term trend over the past 121 years (1895–

2015), but the occurrences of extreme dry and wet

events have increased considerably since 1967. In con-

trast, the rainy season average temperature fields show a

significant warming trend since 1895 with different

warming rates in minimum andmaximum temperatures,

resulting in a decreased diurnal variation over central

and Southern and an increased diurnal variation over

Northern California. In addition, Southern California in

general has a larger warming rate than Northern Cal-

ifornia does; in particular, the South Coast region (H)

has the highest warming rate.
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