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ABSTRACT: The University of CaliforniaDavis_Primary (UCD_P) chemical trans-
port model was developed and applied to compute the primary airborne particulate matter
(PM) trace chemical concentrations from ∼900 sources in California through a simulation
of atmospheric emissions, transport, dry deposition and wet deposition for a 7-year period
(2000−2006) with results saved at daily time resolution. A comprehensive comparison
between monthly average model results and available measurements yielded Pearson
correlation coefficients (R) ≥0.8 at ≥5 sites (out of a total of eight) for elemental carbon
(EC) and nine trace elements: potassium, chromium, zinc, iron, titanium, arsenic, calcium,
manganese, and strontium in the PM2.5 size fraction. Longer averaging time increased the
overall R for PM2.5 EC from 0.89 (1 day) to 0.94 (1 month), and increased the number of
species with strong correlations at individual sites. Predicted PM0.1 mass and PM0.1 EC
exhibited excellent agreement with measurements (R = 0.92 and 0.94, respectively). The
additional temporal and spatial information in the UCD_P model predictions produced
population exposure estimates for PM2.5 and PM0.1that differed from traditional exposure estimates based on information at
monitoring locations in California Metropolitan Statistical Areas, with a maximum divergence of 58% at Bakersfield. The UCD_P
model has the potential to improve exposure estimates in epidemiology studies of PM trace chemical components and health.

■ INTRODUCTION

Epidemiological studies have identified positive correlations
between exposure to ambient airborne particulate matter (PM)
and increased health risk (see, for example, refs 1−5). Recent
studies6−12 have attempted to link these health effects to
particle size and/or composition using exposure estimates
based on the measured ambient PM10 or PM2.5 concentrations
from central site monitors (the PM monitors at a site centrally
located with respect to the area being studied), which are
usually sparse in time (1 sample every 3 days), space (1 sample
for a Metropolitan Statistical Area), chemical composition (no
routine measurement of organic molecules), and source origin
information (no routine estimation). In addition, important
particle size distribution and chemical composition information
is not routinely available, especially for the ultrafine particle size
fraction (Dp < 100 nm; PM0.1) that has been shown to have
greater toxicity than larger particles.13−17 A more accurate
estimate of exposure to detailed particle size fractions and
chemical components would improve the power of future
epidemiological studies.
A variety of statistical and mechanistic modeling techniques

have been proposed to improve the accuracy of exposure
estimates to air pollution. Land use regression models have

been developed to predict the spatial distribution of exposure
to primary traffic PM on scales of hundreds of meters,18,19 but
corresponding regression models for other important particle
sources have not been widely demonstrated. Regression models
also do not directly address the issues of data sparseness in
time, particle size, and particle composition. Some land use
regression models20,21 and dispersion models22 have been
developed to estimate exposure to ultrafine particle number
concentration, but the resulting epidemiological associations
are not consistent with findings in toxicology studies. These
results suggest that some feature other than particle number
that is more directly correlated with ultrafine particles surface
area may merit investigation. PM0.1 mass concentrations are
more strongly correlated to surface area than number
concentrations23 but PM0.1 measurements have only been
made in a few intensive study periods24−28 and one annual
study23 to date.
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Chemical transport models (CTMs) can predict the detailed
size and chemical composition distribution of primary PM size
fractions and composition with high temporal and spatial
resolution. Recent studies have used CTMs to estimate air
pollution exposure to PM2.5 mass and ozone (O3) in the
U.S.29,30 and Europe.31 No published studies to date have taken
full advantage of the ability of CTMs to simultaneously
estimate population exposure to multiple particle size fractions,
chemical components, and source contributions, partly due to
the uncertainties in the model inputs, simplified representation
of the complex processes, and difficulty in evaluating the
accuracy of such predictions.
The objective of this study is to develop the University of

California Davis_Primary (UCD_P) CTM to predict
detailed particle size, composition, and source information
over a 7-year time period that can be used in subsequent
epidemiological studies for PM0.1 and PM2.5. California is
chosen as the focus area for the study because it has a large
population exposed to high PM concentrations, accurate PM
emissions inventories, and comprehensive ambient measure-
ments for model evaluation. The ability of UCD_P predictions
for mass and chemical component concentrations in the PM0.1
and PM2.5 size fractions is evaluated against ambient measure-
ments; a companion study evaluates the model ability for PM
source apportionment.32

Model Description. The UCD_P model used in the
current study was developed from the source-oriented UCD/
CIT air quality model that has been successfully applied in
several previous studies in the South Coast Air Basin (SoCAB)
and the San Joaquin Valley (SJV) in California.33−38 In contrast
to the conventional UCD/CIT model, the UCD_P model only
tracks the primary PM (particles emitted directly into the
atmosphere), and does not take into account the formation of
secondary PM (produced by chemical reactions in the
atmosphere). Therefore, the UCD_P model includes a
complete description of emissions, advection, diffusion, dry
and wet deposition, but excludes gas- and particle- phase
chemistry, gas-to-particle conversion, nucleation, and coagu-
lation. Sensitivity tests indicate that these omitted processes
have little impact on predicted PM0.1 mass concentrations
(Supporting Information (SI) Figure S8 and associated
discussion) The UCD_P model is designed to track large
numbers (+1000) of primary particle source contributions
through the atmosphere while retaining size, composition, and
source-origin information. The details of the standard
algorithms used in the UCD/CIT family of models are
provided in previous studies and therefore not repeated here.
The formulation of advection and diffusion scheme is described
by Kleeman and Cass,33 the dry deposition scheme is described
by Kleeman et al.,39 the vertical advection scheme is described
by Hu et al.,40 and the wet deposition scheme is described by
Mahmud et al.41 Verification of the individual processes
through a comparison to theoretical calculations is described
in the SI (Figure S1). Zhang and Ying42 developed a one-way
nesting capability in the conventional UCD/CIT model and
this feature was implemented into the UCD_P model.
Concentration fields from model calculations in the coarse-
resolution parent domain for every source type are saved in the
boundary grid cells of the finer-resolution nested domains, and
then are used as the boundary conditions for the model
calculation in the nested domains.
Model Application. Model calculations were performed to

predict primary PM concentrations for seven continuous years

(January first, 2000 to December 31st, 2006) in California.
Figure 1a displays the air quality modeling domains used in the

present study as well as the population density in California. A
one-way nesting technique was used with a parent domain of
36 km horizontal resolution that covered the entire state of
California (referred to as CA_36km) and two nested domains
of 4 km horizontal resolution that covered the SoCAB (referred
as SoCAB_4km) and San Francisco Bay Area + SJV + South
Sacramento Valley air basins (referred as SJV_4km). Over 92%

Figure 1. (a) Modeling domains (same as in panel b) and population
density in California; (b) Modeling domains and measurement sites of
fine PM (dark dots) and ultrafine PM (red crosses). In panel b, The
CA_36km domain is outlined by black line, the SJV_4km domain is
outlined by blue line, and the SoCAB_4km domain is outlined by
green line. The names and locations (latitude/longitude) of the sites
are listed in Table S2 in the SI.
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of California’s population lives in the high-resolution (4 km)
domains. The UCD_P model was configured with 10 vertical
layers up to a height of 5 km above ground level in the
CA_36km and the SoCAB_4km domains. The thickness of
each vertical layer, from ground to top, was 35, 105, 140, 330,
390, 500, 500, 1000, 1000, and 1000 m. The UCD_P model
was configured with nine vertical layers up to height of 4 km
above ground level in the SJV_4km domain in order to reduce
the memory requirements of the simulation. A sensitivity study
determined that the configuration of the vertical domain at 4
km vs 5 km in the SoCAB caused <3% difference in predicted
PM concentrations. Note that the use of relatively shallow
vertical domains is only appropriate in regions with well-
defined air basins and would not be appropriate for locations in
the eastern U.S. or other regions with moderate topography.
Meteorological Fields. Hourly meteorological fields

during the 7-year modeling period were simulated with the
Weather Research and Forecasting (WRF) model version
3.143,44 using two nested domains (2-way interaction) that had
horizontal resolutions of 12 km and 4 km, respectively. North
American Regional Reanalysis data with 32 km horizontal
resolution and 3-h time resolution were used as initial and
boundary conditions of the coarse 12 km domain. The WRF
model was configured with 31 vertical layers up to 100 hpa
(around 16 km above ground level). Previous studies45,46

showed that regional meteorological models such as MM5 and
WRF tend to overpredict the surface winds in regions with
complex terrain such as the SJV, especially during stagnant
events with low wind speed. Four-dimensional data assim-
ilation47 was utilized in the present simulations to anchor the
model predictions to observed meteorological patterns. A
previous study40 demonstrated that four-dimensional data
assimilation improved the meteorological predictions needed
for air quality modeling in the SJV region, but four-dimensional
data assimilation did not completely correct the bias during the
events with low-speed surface winds that produce the highest
pollution episodes. A recent study48 found that increasing the
surface friction velocity (u*) by 50% improved the surface wind
predictions in a complex-terrain domain that covers the state of
Washington. Hu49 adopted this method during simulations of
the Central California Ozone Study 2000 that successfully
reproduced ozone concentration trends in central California. In
the present study, the ability to improve model performance for
the major air-quality related meteorological parameters by
increasing u* was examined during a one-year sensitivity study
for 2000. Figure S2 in the SI shows the comparison for the
surface wind with and without modifications to u*. The results
confirm that increasing u* lowers the mean wind bias from 1.15
m/s to −0.50 m/s, and lowers the root-mean-square error from
2.95 to 2.20 m/s. Therefore, the increased u* method was also
applied in 2001−2006 WRF simulations. Temperature, wind
and humidity were exclusively evaluated against observations
for all air basins in California for the seven years, and the results
are summarized in Table S1 of SI. Mean fractional bias (MFB)
of temperature and wind are generally within ±0.15, root-
mean-square errors of temperature are around 4 ◦C, and root-
mean-square errors of wind are generally lower than 2.0 m/s,
especially in the air basins with high population density. This
level of performance is consistent with a previous WRF study in
California,50 but is generally poorer than the performance of
WRF in other regions with less extreme topography.51,52

Emissions. Hourly particle-phase emissions from anthro-
pogenic sources were generated using an updated version of the

emissions model described by Kleeman and Cass.53 In the
revised system, emission totals of individual emissions
inventory code sources from the standard emissions inventories
(including point, area, mobile, and dust emissions) provided by
the California Air Resources Board were transformed into size-
resolved emissions of total particle mass using measured source
profiles (see, for example, refs 54−56). More detailed
discussion of the emissions processing is presented in another
study.57 Particle size distributions emitted from each source
were represented by eight discrete particle diameters centered
within equally spaced logarithmic size intervals spanning the
diameter range from 0.01 to 20 μm. PM emissions from each of
the ∼900 sources present in the California emissions inventory
were tracked separately in the simulation as part of a
comprehensive source apportionment study. The results of
those source apportionment calculations are reported in a
companion paper.32 The mass and density of size-resolved PM
was tracked during model calculations, with composition
profiles applied during postprocessing of results (see Section
4.1). High resolution emissions from wildfires and open
burning (1 × 1 km)58,59 were included in this study, but
emissions of biogenic particles and sea-salt particles were not
included.

Ambient PM Measurements. Comprehensive model
evaluations were performed for primary PM components,
that is, elemental carbon and trace elements but not secondary
components such as organic carbon, sulfate, nitrate, and
ammonium because the model was not configured to predict
these secondary species. PM2.5 speciation measurements were
obtained from the California Air Resources Board “2011 Air
Quality Data DVD”,60 while ultrafine measurements were
obtained from published literature. There were total of 13
PM2.5 speciation sites in the 4 km domains during the modeling
periods with a measurement frequency of 1 in 3 or 1 in 6 days;
Measured PM2.5 EC concentrations at five sites were found to
be exactly 0.5 μg/m3 on >80% of the measurement days
suggesting corrupt or missing data at these locations. These 5
PM2.5 sites were not included in the evaluation analysis. There
were 13 sites in the 4 km domains with measurements available
for PM0.1 (ultrafine) and PM0.18/PM0.25 (quasi-ultrafine) during
intensive operation periods typically shorter than 1 month. The
ultrafine and quasi-ultrafine measurement sites are shown in
Figure 1b, and a brief description of site locations and major
nearby sources is included in SI Table S2. The sampling period
and size cut information is shown in SI Table S8. MFB, mean
fractional error (MFE), Pearson correlation coefficient (R), and
coefficient of divergence (COD) were calculated as the
statistical measures for model performance. R and MFB are
the primary metrics used to evaluate the accuracy of model
estimates in space and time.

■ RESULTS
PM2.5 EC. The predicted and measured daily PM2.5 EC

concentrations exhibited seasonal variation at the seven
available monitoring sites (Sacramento, San Jose, Fresno,
Bakersfield, Los Angeles, Riverside, and El Cajon) with lower
values during the summer and higher values during the winter
(SI Figure S3). The predictions at the exact location of the
monitors and the best fit predictions (closest to observations)
within 12 km (i.e., three grid cells in the present study) of the
observation site are shown in the figure. The difference between
the predictions at the exact location of monitors and the best fit
predictions conveys information about the spatial gradient of
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concentrations. Over longer time scales, EC concentrations
were overpredicted in the winter of 2000−2002 at Sacramento,
San Jose, Fresno and Los Angeles and under-predicted in the
winter of 2005−2006 at Bakersfield, Riverside, and El Cajon.
This issue is not related to nearby spatial gradients since the
best fit predictions were used in this comparison. Long-term
temporal trends likely reflect economic activity and goods
movement patterns that are not currently represented in the
emissions inventory.
The choice of the time-averaging period influences the level

of agreement between predictions vs measurements at the
PM2.5 speciation sites. Figure 2 compares observed EC
concentrations and best fit predictions using averaging times
of (a) 1 day, (b) 2 weeks, (c) 1 month, (d) 3 months, and (e) 1
year. Longer averaging times produce better agreement
between model predictions and measurements because they
remove the effects of random measurement errors at
monitoring stations and variations in actual emissions rates
that are not reflected in seasonally averaged emissions
inventories. The overall correlation coefficient (R) for PM2.5

EC at all sites increases from 0.89 for daily averages to 0.94 for

monthly averages, and 0.95 for annual averages (SI Table S3).
The regression slope increases from 0.74 for daily averages to
0.92 for monthly averages, and 0.97 for annual averages. The
regression slopes <1 indicate under-prediction of EC
concentrations, especially at locations with the highest
measured values. The Riverside site has the greatest EC
under-predictions with a regression slope of 0.75. This site is
within 0.5 km of a major freeway; model predictions based on 4
km grid resolution cannot represent the highest concentrations
in the immediate vicinity of major highways. High emissions
events and/or stagnant local meteorological conditions typically
lead to high primary PM concentrations. These processes may
not be represented accurately enough in the current study to
capture the highest concentration events. MFB, MFE and COD
decrease as the averaging period gets longer because the
influence of extreme events is reduced (Table S3 in the SI).

PM2.5 Trace Elements. Table 1 shows performance
statistics (R and MFB) for EC and trace elements using
monthly averaged best fit predictions at the eight monitoring
sites (daily, biweekly, seasonal and annual statistics are included
in Tables S4−S7 in the SI). At more than five individual sites

Figure 2. Observed and predicted PM2.5 EC concentrations using averaging times of (a) 1 day; (b) 2 weeks; (c) 1 month; (d) 3 months; and (e) 1
year.
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(62.5% of the total eight sites), nine elements (potassium,
chromium, zinc, iron, titanium, arsenic, calcium, manganese,
and strontium) (39% of the total 23 elements analyzed in the
study) have R ≥ 0.8. Model performance varies strongly with
location. Figure 3 shows that predictions at San Jose, Los

Angeles, and Bakersfield have the best agreement with
measurements, with R ≥ 0.8 and MFB within ±0.3 using
daily averages for over ∼10 species. Predictions at Sacramento,
Fresno, and Bakersfield have the least agreement with
measurement, with R ≥ 0.8 and MFB within ±0.3 for less
than five species. Figure 3 also indicates that agreement
between predictions and measurements for trace elements
improves as averaging time increases. The number of species
with R ≥ 0.8 and MFB within ±0.3 generally increases as the
averaging time increases from 1 day to 3 months. Annual
averages do not necessarily yield better results than monthly or
seasonal averages, due to the fact that there are only (at most)
seven data points in the annual average analysis and 1 or 2
outliers can significantly affect the results. Predicted and
observed concentrations of the PM2.5 compositions are
compared in SI Figure S4. The spatial distribution of predicted
PM2.5 mass, EC, and element concentrations is shown in SI
Figure S6, with significant differences observed for PM
components emitted from different sources.

Ultrafine PM Mass and Element Carbon. A number of
short-term ultrafine particle and quasi-ultrafine particle
measurement campaigns were conducted in California during
the modeling period24−28 (see Table S8 in SI for a summary).
Model predictions were compared to the measured ultrafine
PM mass concentrations pooled across all studies. Ultrafine PM
number concentrations were not evaluated because nucleation
processes were not enabled in model calculations. Figure 4
shows the measured and predicted ultrafine PM EC and mass
concentrations. Best-fit model predictions are in excellent
agreement with measured ultrafine EC concentrations, with R =
0.94. Predicted ultrafine PM mass also agrees well with
measured values, with R = 0.92. The time series results of
ultrafine EC and ultrafine mass (SI Figure S5) indicate excellent
temporal agreement at most of the sites. The model predictions
are not able to capture events when measured ultrafine or
quasi-ultrafine PM mass is >4 μg/m3 or <1 μg/m3, and when
measured ultrafine or quasi-ultrafine EC is >1 μg/m3 or <0.2
μg/m3. High ultrafine PM mass and EC concentrations were
observed at urban sites that are located in central Los Angeles
near industrial sources and busy highways. The current model
calculations did not include plume in grid calculations and so
point and line source emissions were instantaneously diluted
into 4 × 4 km grid cells. Finer grid resolution combined with
large eddy simulation would likely improve the model
performance at sites influenced by neighborhood-scale
emissions. The UCD_P model does not consider the processes
of nucleation, coagulation, and gas-to-particle transfer in the
simulations in order to make the detailed source apportionment
calculations computationally feasible. Nucleation and con-
densation effects generally have minor impact on PM0.1 because
this particle size fraction is dominated by primary emissions
from combustion sources. Nucleation is important for number
concentrations which are dominated by particles with diameter
<0.05 μm but these particles contribute little to PM0.1 mass
concentrations. Condensation of semivolatile material generally
takes place in the particle accumulation mode, not in the
ultrafine size range due to the increase in the gas-phase

Table 1. Pearson Correlation Coefficients (R = Color) And Mean Fractional Bias (MFB = Numerical Value) Of Monthly
Average PM2.5 EC and Trace Elements at Individual PM2.5 Speciation Measurement Sites

Figure 3. Number of species which have R ≥ 0.8 and MFB within
±0.3 at individual sites when using averaging times of (a) 1 day; (b) 2
weeks; (c) 1 month; (d) 3 months; and (e) 1 year.
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concentration above small particles (Kelvin effect). Size-
resolved source apportionment studies confirm that most
secondary organic aerosols formation takes place at Dp > 0.1
μm.61−63 To examine the uncertainty in predicted PM0.1
concentrations due to the omission of these processes,
sensitivity tests were conducted that included gas-particle
conversion and coagulation. Difference in the 7-year average
concentrations of PM0.1 EC and mass concentrations are
generally less than 10% (SI Figure S8).
Sharper spatial gradients were found for PM0.1 mass and all

the components, compared to PM2.5 mass and components (SI
Figure S7). This reflects the larger deposition velocity for
ultrafine particles due to Brownian diffusion.64 PM0.1 and PM2.5
spatial patterns for certain elements such as Al and K were
significantly different, reflecting different sources dominating
each size fraction. Within the PM0.1 size fraction, trace elements
exhibited significantly different spatial patterns depending
largely on their emissions sources.

■ DISCUSSION

Information from 8 available PM2.5 speciation sites was used to
verify the temporal and spatial accuracy of UCD_P predictions
of PM2.5 primary components (EC and trace elements). There
were 66 PM2.5 mass observation sites located inside the 4km
domains that cannot be directly used to compare with UCD_P
results because the secondary PM components (nitrate, sulfate,
secondary organic aerosols, etc.) were not included in the
UCD_P model. To help build confidence in the UCD_P
results, we repeated the simulations based on the inputs for the
7 year study period using the full UCD/CIT model that
includes the gas and PM chemistry, secondary PM components
and gas-particle conversion. The full CTM predictions for total
(=primary + secondary) PM2.5 mass were compared to the
measured concentrations at the 66 sites. Detailed results are
discussed in a separate manuscript.56 As a summary, 52 sites
(79% of the total 66 sites) had MFB within ±0.3 after a
sensitivity analysis for dust emissions. Uncertainties in the
emissions inputs and limitations in reproducing local

Figure 4. Observed and predicted ultrafine (PM0.1) and quasi-ultrafine
(PM0.18, PM0.25) EC and mass concentrations. PM0.1 was reported by
Sardar JGR, Kim, and Herner, PM0.18 was reported by Sardar ES&T,
and PM0.25 was reported by Krudysz. Averaging times were 1 month, 2
weeks, 5 months, 2.5 months, and 3−4 days reported by Sardar JGR,
Sardar ES&T, Kim, Krudysz, and Herner, respectively. The size cut
and sampling period information is listed in SI Table S8.

Figure 5. Central site concentrations vs population weighted concentrations in seven California metropolitan statistical areas.
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meteorological conditions account for the poor performance at
the remaining sites.
California’s relatively accurate emissions inventory combined

with a highly resolved source profile library and modified WRF
predictions for meteorology yield model predictions for EC,
potassium, chromium, zinc, iron, titanium, arsenic, calcium,
manganese, and strontium that generally reproduce observed
monthly/seasonal variations. The results of the current study
demonstrate that not all CTM predictions for primary PM
concentrations are suitable for inclusion in epidemiology
studies. Sea-salt emissions need to be included for predictions
of sodium, chloride, and other major components of sea-salt.65

More accurate emissions inventories and source profiles would
be needed to increase the accuracy of predictions for other
species. One approach to account for poor emissions data is to
combine model predictions with measurements at receptor sites
in a statistical framework.66 This new data “fusion” approach is
undergoing initial evaluation in epidemiological studies, but was
not employed here, because measurements for some particle
size fractions/chemical components are not available even
though they are of great interest in epidemiology applications.
In the current study, predicted PM trace components

concentrations, which were in good agreement with measure-
ments, had significantly different spatial patterns that would not
be predicted by central site monitors or land use regression
models optimized for traffic sources. These spatial patterns will
lead to exposure misclassification in epidemiological studies.
Annual-average population weighted concentrations (PWCs)
were calculated to estimate the impact of the spatial
heterogeneity. PWC is calculated as follows:

=
∑ ×

∑
C P

P
PWC i i i

i i (1)

where i is the grid point, Ci is the annual average
concentration (as shown in SI Figure S4 and S5) and Pi the
population density (as shown in Figure 1a) in grid cell i. PWC
for EC and mass in PM2.5 and PM0.1 size fractions were
calculated to test the effect of spatial heterogeneity. Figure 5
shows that PWCs of PM2.5 EC in 7 California Metropolitan
Statistical Areas were generally lower than central monitor
predictions with a maximum bias of −50% in Los Angeles and
−49% in Bakersfield, and an average bias of −33%. Model
predictions for PM2.5 EC are reasonably accurate at monitoring
sites, with linear regression slopes of 1.02, 1.05, 0.99, 0.99, 0.98,
0.75, and 0.81 at Sacramento, San Jose, Fresno, Bakersfield, Los
Angeles, Riverside, and El Cajon, respectively, and R2 >0.92 at
all sites. These biases are caused by differences in predicted
concentrations at the location of the central monitors vs other
locations within the Metropolitan Statistical Area. PWCs of
PM0.1 mass revealed positive and negative biases associated with
central site monitoring locations varying from −26% in Fresno
to +21% in Sacramento. The difference between PWCs of
PM0.1 EC and central site concentrations were even greater,
with an average difference of −39%, and specific values of
−55% in Los Angeles, and −59% in Bakersfield. These biases
have likely implication for epidemiological analysis of PM0.1
health associations, suggesting that central site monitors may
introduce uncertainty into this analysis.
Accurate CTM spatial representation is a key factor for

exposure assessment. CTM grid resolutions of 4km provide
more spatial information than central monitor measurements,
but even 4 km resolution may not be sufficient for species and

sources with very sharp gradients. Land use regression models
are widely used to construct spatial variations of air pollutants
at ∼100 m resolution for epidemiological studies.67 Land use
regression models have been mostly applied for studies of gas-
phase pollutants emitted from traffic sources, but two recent
studies used land use regression models in California for PM2.5
mass.68,69 In the future, land use regression models could be
combined with CTM predictions for detailed PM components
and sources to predict concentration fields at spatial resolution
finer than 4 km.
Model results agree better with measurements over longer

averaging time and so they may be most useful in
epidemiological studies with longer averaging times (for
example ≥1 month). Day-to-day variations in concentrations
driven by changes in weather patterns and/or unique source
activity are difficult to predict at increasingly higher time
resolution (for example ≤1 day). Model predictions have larger
bias on days with the highest observed primary concentrations.
Analysis of predicted meteorological fields reveals that the WRF
model has difficulties predicting extreme stagnation events that
produce high PM pollution (wind speed is overpredicted
during these events). The CTM model temporal performance
would be enhanced with improvements in meteorological
modeling. In addition, the CTM model temporal performance
would benefit from the development of high temporal
resolution emissions inventories (for example, most of
residential emissions are annual average in the current
inventory).70,71

Notwithstanding the areas for future improvement described
above, the results of the current study are presently being
evaluated in a number of epidemiology studies. The first such
analysis to yield results has identified associations between
primary PM exposure and term low birth weight in California’s
Los Angeles County.72 The results reveal a 2.5% increase in low
birth weight risk associated with an interquartile range increase
in primary PM2.5 and PM0.1 mass concentrations. Significant
associations with low birth weight are also found for chemical
compositions of EC, potassium, iron, and titanium in PM2.5 and
EC, potassium, iron, and chromium in PM0.1. Future
applications will evaluate the relationships between PM2.5 and
PM0.1 composition and sources vs other health end points in
California.

■ ASSOCIATED CONTENT
*S Supporting Information
Meteorology evaluation metrics in California air basins (Table
S1), Observation site information (Table S2), air quality
evaluation metrics for EC and elements (Table S3), Pearson
correlation coefficients and mean fraction bias of daily,
biweekly, seasonal, and annual average PM2.5 EC and trace
elements at individual PM2.5 speciation measurement sites
(Tables S4−7), ultra- and quasi-ultra- fine PM measurements
(Table S8), verification of the treatment in the UCD_P model
for individual processes including dry deposition, wet
deposition, advection, and diffusion (Figure S1), meteorology
improvement by increasing friction velocity (u*) in 2000
(Figure S2), time series of observed and predicted daily
concentrations PM2.5 EC at 7 sites (Figure S3), observed and
predicted ultrafine EC and ultrafine mass concentrations
(Figure S5), predicted spatial distributions of PM2.5 mass, EC
and trace elements (Figure S6), predicted spatial distributions
of PM0.1 mass, EC and trace elements (Figure S7). Impact of
gas-particle transfer and coagulation on the 7 year average
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concentrations of PM0.1 EC and PM0.1 mass (Figure S8). All
model predictions described in the current study are available
for download at faculty.engineering.ucdavis.edu/kleeman. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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