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The performance of the Weather Research and Forecasting (WRF)/Community Multi-scale Air Quality (CMAQ)
system in the eastern United States is analyzed based on results from a seven-year modeling study with a
4-km spatial resolution.
For 2-m temperature, themonthly averagedmean bias (MB) and gross error (GE) values are generallywithin the
recommended performance criteria, although temperature is over-predicted with MB values up to 2 K. Water
vapor at 2-m is well-predicted but significant biases (N2 g kg−1) were observed in wintertime. Predictions for
wind speed are satisfactory but biased towards over-prediction with 0 b MB b 0.5 m s−1 and root mean square
error (RMSE) around 1.5 to 2 m s−1. Wind direction, predicted without observation nudging, is not well-
reproduced with GE values as large as 50° in summertime. Performance in other months is better with RMSE
around 20–30° and MB within ±10°.
O3 performance meets the EPA criteria of mean normalized bias (MNB) within ±0.15 and accuracy of unpaired
peak (AUP)within 0.2. Normalized gross error (NGE) ismostly below 0.25, lower than the criteria of 0.35. Perfor-
mance of PM10 is satisfactory with mean fractional bias (MFB) within ±0.6, but a large under-prediction in
springtime was frequently observed. Performance of PM2.5 and its components is mostly within performance
goals except for organic carbon (OC), which is universally under-predicted with MFB values as large as −0.8.
The predicted frequency distribution of PM2.5 generally agrees with observations although the predictions are
slightly biased towardsmore frequent high concentrations inmost areas. Elemental carbon (EC), nitrate and sul-
fate concentrations are also well reproduced. The other unresolved PM2.5 components (OTHER) are significantly
overestimatedbymore than a factor of two. No conclusive explanations canbemade regarding thepossible cause
of this universal overestimation, which warrants a follow-up study to better understand this problem.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Ozone (O3) and particulate matter (PM) have been shown to have
adverse effects on human health (Lippmann, 1991; Poschl, 2005). How-
ever, spatial heterogeneity in individual or population exposure to air
pollution cannot be correctly represented based on monitoring data
alone (Bell, 2006). Furthermore, air monitoring data is limited by
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Fig. 1. The 12-km and 4-km air quality modeling domains used in this study. The 36-km
domain, covering the entire continental US and part of Canada and Mexico, is not shown
here. Numbers on the axes are grid cell index of the 12-km eastern US domain.
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analytical methods and may not provide sufficient temporal resolution
or detailed chemical composition information to support detailed
health outcome analysis.

State-of-the-art 3D chemical transport models (CTMs) can provide
detailed gaseous and PM concentrations and their source and chemical
composition information at one-hour resolution over large areas, which
naturally fill in the spatial and temporal gaps in the exposure estimation
solely based on air quality measurements at fixed monitors (Bell, 2006;
Bravo et al., 2012). Among the many CTMs, the Community Multiscale
Air Quality (CMAQ) model (Byun and Schere, 2006) is one of the most
widely used regional air quality modeling systems in recent years
(Simon et al., 2012) to evaluate pollution control measures, test new
atmospheric mechanisms and processes that control air pollution, and
determine source contributions to air pollutants. The CMAQ model has
also been used to provide air pollution exposure estimations in a few
recent studies (Arunachalam et al., 2011; Chang et al., 2012; Grabow
et al., 2012; Tong et al., 2009).

The accuracy of the exposure estimation using modeled air quality
data is affected by the ability of themodel to reproduce observed air pol-
lutant concentrations. Previous studies have shown that although re-
gional model predictions of O3 are not significantly improved by using
a higher spatial resolution above 12 km(Simon et al., 2012), higher spa-
tial resolution models better capture the peak concentrations of PM
(Garcia-Menendez et al., 2010; Stroud et al., 2011). Model performance
has also been reported to vary between short term and long term aver-
ages. Bravo et al. (2012) reported large seasonal variations in the CMAQ
model performance of O3 and PM2.5 in the eastern United States (US) in
2002 although the annual model performance is satisfactory. Hogrefe
et al. (2008) reported that the CMAQ model captures the long-term
temporal variations of air pollutants better than their spatial variations
over the northeastern US during 1988–2000.

In addition to the effects of spatial and temporal resolutions, the
quality of the meteorological parameters such as ambient temperature,
water vapor content, boundary layer height, and wind speed and direc-
tion also has impacts on the downstreamprediction of air pollutant con-
centrations and needs to be carefully evaluated. While themeteorology
performance of episodic simulations has been widely reported in the
literature, long-term meteorological simulations and their model per-
formance statistics are rarely reported.

In this study, a 7-year (2000–2006) air quality simulation is conduct-
ed over eastern US using the CMAQmodel to provide exposure estima-
tion databases of criteria gas pollutants, PM2.5, PM10 and PM2.5 chemical
components for participants from seven cities in two longitudinal co-
hort studies. Spatial resolutions of the CMAQ simulations are as high
as 4 km in order to better represent different exposure levels of partic-
ipants. Although long term high resolution simulations have been re-
ported for primary PM in California (Hu et al., under review-a; under
review-b), to the author's knowledge, this is the first long term applica-
tion of a CTM that covers eastern US with such a fine resolution. This
paper focuses on the evaluation of model performance, which will pro-
vide a foundation for companionpapers that estimate theO3 and PMex-
posure and associate air pollution with human health outcomes.

2. Model application

2.1. Model settings

The chemical transport model used in this study is CMAQ version
4.7.1. The standard CMAQ model with the lumped, non-toxic version
of the SAPRC99 photochemical mechanism (Carter, 2000) and the fifth
generation aerosol module (AERO5) (Foley et al., 2010) is used in this
work. Air quality simulations are performed for a period of 7 years
from 2000 to 2006 using three-level nested domains with horizontal
resolutions of 36-km, 12-km and 4-km, respectively. All three-level do-
mains use the same vertical domain set up with 16 vertical layers that
reach approximately 20 km above ground. The first layer thickness is
approximately 30 m. The 36-km (160 × 124 grid cells) domain covers
the entire continental US and the 12-km domain covers the eastern
US (159 × 111). Four 4-km domains cover seven cities selected from
two longitudinal cohort studies: New York City, NY (NYC), Pittsburgh,
PA (PIT), Baltimore, MD (BAL), Chicago, IL (CHI), Detroit, MI (DET), St.
Paul, MN (S-P), and Winston-Salem, NC (W-S). The 4 km NPB domain
(185 × 119) includes NYC, PIT, and BAL and the 4 km CD domain
(159 × 94) includes CHI and DET. The SP and WS domains (both are
50 × 50) include S-P and W-S, respectively. Five of the seven cities are
from the Multi-Ethnic Study of Atherosclerosis (MESA) and two are
from the Women's Health Initiative Observational Study (WHI-OS).
Locations of the domains and the cities of interest are shown in Fig. 1.

2.2. Meteorological inputs

The meteorological inputs are generated by the Weather Research
and Forecasting (WRF) model v3.2.1 with 29 vertical layers. The initial
and boundary conditions for the WRF simulations are prepared using
the 1° × 1° resolution NCEP (National Centers for Environmental Pre-
diction) FNL (Final) Operational Global Analysis dataset (available at
http://rda.ucar.edu/datasets/ds083.2/). The land use/land cover and to-
pographical data are from the default WRF input dataset. Two-way
nested runs are conducted to generate meteorological fields for the
36-km, 12-km, and 4-km domains simultaneously. The WRF domains
are much larger than their CMAQ counterparts to ensure minimum in-
fluence from the boundary conditions to the air quality simulation do-
mains. The WRF simulations for each year are divided into multiple
runs. Each WRF run simulates 7 days with fresh initial conditions
based on the NARR (NCEP North American Regional Reanalysis) reanal-
ysis processed by WRF Preprocessing System (WPS). The first day of
each run, which overlaps the last day of the previous run, is considered
as a spin-up day and is discarded to avoid the influence of initial condi-
tions on model results. The physics options used to drive the WRF sim-
ulations are listed in Table S1.

2.3. Emissions and other inputs

The US Environmental Protection Agency (US EPA) 2001 Clean Air
Interstate Rule (CAIR) emission inventory is used to generate anthropo-
genic emissions from area, non-road, mobile and point sources for 2000
to 2004. 2000 is the base year, and emissions of year 2001 to 2004
are adjusted based on the average annual emissions treads of criteria
pollutants (download from http://www.epa.gov/ttn/chief/trends/).
The National Emissions Inventory (NEI) in 2005 is used to generate an-
thropogenic emissions for 2005 and 2006. The Sparse Matrix Operator
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Table 2
Definition of statistics metrics used in this study.

Metrics Definition

Mean bias
MB ¼ 1

N∑
N

i¼1
Cm;i−Co;i
� � (1)

Gross error
GE ¼ 1

N∑
N

i¼1
Cm;i−Co;i
�� �� (2)

Root mean square error
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N∑

N

i¼1
Cm;i−Co;i
� �2s

(3)

Mean normalized bias
MNB ¼ 1

N∑
N

i¼1

Cm;i−Co;i

Co;i

(4)

Normalized gross error
NGE ¼ 1

N∑
N

i¼1

Cm;i−Co;i
�� ��

Co;i

(5)

Unpaired predict-to-observed peak
ozone ratio

AUP ¼ Cp;ppeak−Co;opeak

Co;opeak

(6)

Mean fractional bias
MFB ¼ 2

N∑
N

i¼1

Cm;i−Co;i

Cm;i þ Co;i

(7)

Mean fractional error
MFE ¼ 2

N∑
N

i¼1

Cm;i−Co;i
�� ��
Cm;i þ Co;i

(8)

Note: Cm is the model-predicted concentration i, Co is the observed i, and N equals the
number of prediction–observation pairs drawn from all monitoring stations. The
subscripts ppeak and opeak are the hours when predicted and observed peak concentrations
occur.
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Kernel Emissions (SMOKE) emission processing model (version 2.7)
from US EPA is used to process the raw emission inventory to generate
emissions of gases and PM. Table 1 shows the annual emissions ofmajor
pollutants of 4-km domains for base case years 2000 and 2005.

Biogenic emissions are generated using the Biogenic Emissions
Inventory System, v3.14 (BEIS3.14) incorporated in SMOKE, which in-
cludes a 1-km resolution land cover database with 230 different cover
types (Vukovich and Pierce, 2002). Open biomass burning emissions
for years other than 2000 and 2001 are generated using a home-made
tool based on the Fire INventory from NCAR (FINN), an inventory con-
verted from satellite observation (Wiedinmyer et al., 2011). Open burn-
ing emissions for 2000 and 2001 are generated based on the annual fire
emission inventory from NEI. The FINN inventory provides SAPRC99
speciated daily emissions of gaseous and particulate emissions
(elemental carbon (EC), organic carbon (OC), PM2.5 and PM10) based on
satellite observations of open burning events. Each open burning event
is allocated to model grid cells of each domain based on the reported
longitude/latitude of the event and the area burned. The emissions are
evenly distributed vertically to the layers under the planetary boundary
layer (PBL). A temporal variation profile for open burning from aWestern
Regional Air Partnership (WRAP) report (WRAP, 2005) is used to distrib-
ute emissions to each hour of the day. Emissions fromCanada andMexico
are also generated based on inventories provided by US EPA for 2000 and
are not adjusted for different years.

Initial conditions for the first day are generated using CMAQ
program based on default values. The last hour results of previous day
provide initial conditions for the next day. Boundary conditions for the
36-km domain are generated using CMAQ default program as well,
while boundary conditions for finer domains are generated from coars-
er domains. For all subsequent analyses, only simulations from the 4-km
domains are utilized.

3. Model performance evaluation

3.1. Meteorological variables

Mean bias (MB; see Table 2 for definition of MB and other statistical
measures), gross error (GE) and root mean square error (RMSE) are
commonly used for evaluation of meteorology variables. Based on vari-
ous simulations of PSU/NCARmesoscale model (MM5) in Texas, Emery
et al. (2001) proposed benchmarks for temperature (MBwithin±0.5 K
and GE b 2.0 K), water content (water vapor mixing ratio, MB within
±1.0 g/kg and GE b 2.0 g/kg), wind speed (MB within ±0.5 m s−1

and RMSE b 2 m s−1) and wind direction (MB within ±10° and
GE b 30°). McNally (2009) suggested an alternative set of benchmarks
for temperature (MBwithin±1.0 K andGE b 3.0 K) and identical perfor-
mance criteria for water vapor. However, it is concluded that model per-
formance ofwind speed/direction varies significantly among regionswith
different terrain conditions and thus a common model performance
criteria might not be appropriate. Although these proposed benchmarks
are based on MM5 simulations, a recent study that compares WRF and
MM5 over North America showed that WRF performance is similar to
that of MM5 (Gilliam and Pleim, 2009). Thus, these benchmarks were
Table. 1
Emissions of CO, SO2, NOx, VOC and PM2.5 for 4 km domains at 2000 and 2005. Units are
thousand tons year−1.

CO SO2 NOx VOC PM2.5

NPB 2000 13616.93 3305.53 2439.53 1780.65 390.40
2005 11332.49 2964.61 2112.45 1798.48 354.81

CD 2000 9288.77 1030.19 1604.39 1412.72 291.35
2005 7698.96 946.03 1350.57 1259.81 219.66

SP 2000 1284.71 88.99 242.06 196.20 54.57
2005 1132.23 93.62 254.46 174.48 40.32

WS 2000 1263.62 323.26 250.53 223.09 40.41
2005 986.63 359.14 192.96 180.13 34.80
actually used to evaluate WRF model performance in a number of recent
studies (Fast et al., 2006; Misenis and Zhang, 2010; Wang et al., 2010;
Zhang et al., 2012). It should be noted that due to the limited temporal
and spatial coverage of the studies, the proposed benchmarks are
intended to be guidelines rather than definitive tests of passing or failing
of a particular meteorological model application.

In this study, surfaceweather observationsproduced byNational Cli-
matic Data Center (NCDC) (available at http://rda.ucar.edu/datasets/
ds463.3/) are used to comparewith themodel predictions. The statistics
of WRF results are compared with the suggested benchmarks. The so-
called “soccer field” plots are used to illustrate the meteorology model
performance. The goal box in the plot is determined by the performance
criteria for bias and error measures, which allows a clear demonstration
whether a data point meets the bias and error criteria simultaneously.
The ultimatemodel performance goal of zero bias and error is appropri-
ately located at themiddle of the goal-line. For domainsNPB and CD, ap-
proximately 70–200 stations contain valid data for each domain. For
domains SP and WS, only 5–15 stations are available for each domain.
The exact number of stations used in themonthly performance analysis
varies depending on data availability.

Fig. 2 shows the WRF performance of 2-m temperature (T2) for all
the months from 2000 to 2006. As shown in Fig. 2(a), the MB of T2 for
theNPBdomain iswithin−1.0 to 1.5 K.Under-predictions of T2, as rep-
resented by negative MB values, occur much less frequently than over-
predictions and a number of the under-predictions are for summer
months in 2005. The GE values are narrowly distributed within 1.5
and 2.5 K with slightly higher values that occur in late spring and
early summer months. Overall, for the NPB domain, most of the points
are within the suggested model performance criteria with only a few
exceptions. Model performance of T2 for the CD domain is similar to
that of the NPB domain although there are a few more data points
withMB exceeding the suggested criteria. For the two smaller domains,
SP andWS, although theGE values are stillwithin the suggested range, a
significant number of data points exhibit larger MB values than the
recommend criteria of 1.0 K. However, since there are only a limited
number of observation stationswithin each domain, the performance sta-
tistics might not represent the actual domain-wide model performance.

Fig. 3 summarizes the WRF model performance of 2-m water vapor
content (Q2) for the 4-kmdomains. For theNPB domain, approximately
20% of the data points, mostlywintermonths, do notmeet the proposed
criteria (MB within ±1.0 g/kg and GE b 2.0 g/kg). All of these data
points show significant over-predictions with large MB values. For the
CD domain, there are also approximately 20% of the data points
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Fig. 2.WRF performance of 2-m temperature (T2) for all the months from 2000 to 2006 for 4-km domains: (a) NPB, (b) CD, (c) SP, and (d) WS. Different point types represent model
performance criteria for different years. The points are color-coded by themonth of the year. The box in each plot shows the range of the gross error (GE) andmean bias (MB) benchmark
of McNally (2009).
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exceeding the MB performance criteria. The relatively poor perfor-
mance of water vapor content for the two domains contrasts that of
T2, which exhibits excellent model performance. For the SP domain,
most of the exceedances still occur in winter months but model predic-
tions are lower than observations most of the time. Q2 model perfor-
mance in the WS domain is slightly worse than other three domains
with approximately 30% of the data points located out of themodel per-
formance region. The poor performance is mostly due to under-
predictions during the winter months, though a few data points for
summer months also show large MB values.

Fig. 4 illustrates the model performance on 10-m wind speed
(WSPD). Fig. 4(a) shows a clear bias of over-predicting WSPD. For ma-
jority of the data points, theMB values are between 0 and 0.5 m s−1. Al-
though approximately half of the data points have RMSE values greater
than the criteria of 2 m s−1, they are mostly below 2.5 m s−1. Similar
behavior is observed for the CD domain in Fig. 4(b) but more values
are within the goal box. For the SP domain as shown in Fig. 4(c), MB
values are generally below zero, indicating a general under-prediction
of WSPD. The data points that have MB values less than −0.5 m s−1

are usually for winter and spring months. Majority of RMSE values are
within benchmark, even for the data points that are out of the goal
Fig. 3.WRF performance of 2-meterwater vapor content (Q2) for all themonths from 2000 to 2
model performance criteria for different years. The points are color-coded by the month of the
(2001).
box. Fig. 4(d) shows that WSPD values in the WS domain are generally
overestimated. Most of the data points with MB values greater than 0.5
are for spring and summer months. With a few exceptions, the RMSE
values are below the suggested criteria of 2 m s−1. In summary, the
WRF model appears to generally over-predict wind speed in three of
the study domains and under-predict wind speed in the SP domain.
The opposite trend in wind speed in SP is likely caused by the fact that
the S-P domain is relatively small compare to the two large CD and
NPB domains and only a fewmeteorology siteswere included in the do-
main near Saint Paul/Minneapolis area. Influence of the Mississippi
River and urban terrainmay cause a change in wind speed andwind di-
rection locally. The statistics might not represent the overall model per-
formance in the SP domain.

Model performance of wind direction (WDIR) is shown in Fig. 5.
When calculating MB and GE values, a wind speed cutoff value of
0.5 m s−1 is applied to exclude data with low predicted wind speed.
MB values for all the months are within the range except two months
in domain NPB and CD. 48% of GE for domain NPB is larger than 30°
with a maximum of approximately 60°. For domain CD, only one point
of MB is out of the benchmark criteria but 36% of the GEs are larger
than 30° and the maximum is slight higher than 40°. For SP in
006 for 4-kmdomains: (a) NPB, (b) CD, (c) SP, and (d)WS. Different point types represent
year. The box in each plot shows the range of the GE and MB benchmark of Emery et al.
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Fig. 4.WRF performance of wind speed (WSPD) for all the months from 2000 to 2006 for the 4-km domains: (a) NPB, (b) CD, (c) SP, and (d) WS. Different point types represent model
performance criteria for different years. The points are color-coded by themonth of the year. The box in each plot shows the range of theMB and RMSE benchmark of Emery et al. (2001).
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Fig. 4(c), theMBs are exclusively larger than 0 showing over-prediction.
RMSE values are all within or close to benchmark. ForWS, 6 data points
are out of MB benchmark range. The RMSE values are all close or higher
than 30° with a maximum of up to 60°. Most months with large RMSE
are summer months when wind speed is lower. The higher-than-
benchmark RMSE values for wind direction and their seasonal varia-
tions are consistent with another study for western US in spring and
summer 2008 (Morris and Tai, 2012).

Generally, although the WRF performance for temperature, water
content, wind speed, and wind direction does not meet strict bench-
marks for all the months in the seven year simulation, it is comparable
with other studies, and reflects WRF's current ability in reproducing
the observed meteorological conditions.

3.2. Gas phase species

Observed hourly concentrations of O3, CO, SO2 and NOx are retrieved
from the Air Quality System (AQS, http://www.epa.gov/ttn/airs/airsaqs/
detaildata/downloadaqsdata.htm) maintained by the US EPA. US EPA
recommended three statistical measures, mean normalized bias (MNB),
normalized gross error (NGE) and unpaired predict-to-observed peak
Fig. 5.WRF performance of wind direction (WDIR) for all themonths from 2000 to 2006 for the
performance criteria for different years. The points are color-coded by the month of the year. T
O3 ratio (AUP), to evaluate model performance for O3. The criteria are
±15% for MNB, b35% for NGE and ±20% for AUP with a threshold O3

value of 60 ppb, based on the EPA recommendation (U.S.EPA, 2007).
Fig. 6 shows the monthly MNB, NGE and AUP for the 4-km domains

from April to October of each year. For the other months, there are not
enough data points with O3 concentrations higher than the threshold
value to calculate meaningful statistics. For the NPB domain, MNB
values are within the ±15% range except October 2002 and 2003. The
MNB values are closest to zero in the summer months, with over-
predictions of O3 in summer from June to August and under-
predictions in other months. NGE values for the NPB domain are all
within the range of 35%. For AUP, no values are lower than −20% and
only July and August of 2000, 2002 and 2003 and October of 2002 are
slightly higher than 20%. These show that the O3 performance is fairly
good except that the model slightly over-predicts summer peak O3.
For the CD domain, MNB values of April, May, September, and October
of a few years are less than the lower criteria while all other months
are within the criteria. NGE and AUP values are all within the EPA
criteria. For the SP domain, approximately half of the months fall out
of the MNB criteria, indicating that O3 concentrations are generally
underestimated. A significant under-prediction is observed for June
4-km domains: (a) NPB, (b) CD, (c) SP, and (d)WS. Different point types representmodel
he box in each plot shows the range of the MB and GE benchmark of Emery et al. (2001).
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Fig. 6.Monthly mean normalized bias (MNB), normalized gross error (NGE), and unpaired predict-to-observed peak ozone ratio (AUP) for O3 of 4-km domains NPB, CD, SP, andWS. Blue
dashed lines show the criteria recommended by US EPA. Data points are color-coded by month.
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2001. All months are within the criteria for NGE. Two months in 2001
and one month in 2002 do not meet the AUP criteria in the SP domain.
Overall, under-prediction happens often in SP and mostly in 2000 to
2003. For the WS domain, all months are within the criteria of all
three metrics except for one month in 2004 which does not meet the
AUP criteria. No observation is available in the WS domain for 2006. In
summary, O3 performance is generally good and easily meets the EPA
recommendations.

EPA does not provide performance criteria for CO, SO2 and NOx to
evaluate regional air quality models. Model performance statistics for
CO, SO2 andNOx are calculated for concentrations higher than threshold
values of 100, 4 and 5 ppb, respectively. The MNB results for CO, NOx,
and SO2 are shown in Fig. S1 in the Supplementary materials.

3.3. PM10 and PM2.5 mass concentrations

Mean factional bias (MFB) and mean fractional error (MFE) are
widely used in PM performance evaluation studies (Zhang and Ying,
Fig. 7.Mean fractional bias (MFB) of monthly averaged PM10 for the 4-km domains: (a) NPB, (b
and Russell (2006). Data points are color-coded by month.
2010). MFB and MFE are both bounded and symmetrical metrics so
that usually no concentration threshold values are necessary for their
calculations. Boylan and Russell (2006) proposed concentration depen-
dent MFB and MFE performance goals and criteria, realizing that lower
concentrations aremore difficult to accurately predict. The performance
goals are the level of accuracy close to the best model that can be ex-
pected to achieve, while performance criteria are the level of accuracy
acceptable for standard modeling applications. Only MFB values are re-
ported in themanuscript.MFE values are also calculated and included in
the Supplementary materials (Figs. S2–S5). Observed 24-h averaged
PM10 and PM2.5 data used in these comparisons were downloaded
from the US EPA's AQS.

Fig. 7 shows the monthly MFB values for PM10 in all 4-km domains.
For the NPB domain (Fig. 7(a)), all the statistical metrics are within the
suggested criteria and more than half are within the proposed goal, in-
dicating that the domainwide CMAQperformance of PM10 is very good.
PM10 performance of the CD domain (Fig. 7(b)) is similar to that of the
NPB domain. Fig. 7(c) and (d) show PM10 performance at domain SP
) CD, (c) SP, and (d)WS alongwith the performance goals and criteria suggested by Boylan
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andWS. These two domains cover much smaller areas compared to the
NPB and CD domains and only a few observation sites are in each do-
main. Several data points, mostly representing spring months, do not
meet the performance criteria due to significant under-predictions.
Overall, themodel predictions for PM10 are generally good formost sea-
sons. The simulations tend to under-predict high PM10 concentrations
in spring, which is likely due to under-estimation of windblown dust
or fugitive dust from agriculture activities such as soil tillage. As the cur-
rent standard CMAQ modeling application does not treat agriculture
emissions mechanistically using actual meteorological inputs and does
not include windblown dust emissions, under-prediction of PM10 in
spring time is expected. Under-predictions in the summer months are
likely due to a combination of under-prediction of SOA and dust contri-
butions. Over-prediction in other months is likely due to the overesti-
mate of fugitive dust by the annual emission inventory (Pace, 2005b).

Fig. 8 shows the monthly MFB values of PM2.5 for all 4-km domains.
Generally,model predictions agreewellwith observation.MFBvalues of
all months for all domains are within the criteria except two points for
NPB (see Fig. 8(a)) and several points for SP (see Fig. 8(c)). Domain
averaged PM2.5 concentrations for NPB, CD, and WS domains are
approximately 10–20 μg m−3 and 5–10 μg m−3 in the SP domain. The
MFB values for the model indicate slight over-predictions of PM2.5 dur-
ing the wintertime while the MFB values for summertime are closer to
0. Under-predictions of PM2.5 are obvious in the NPB and WS domains
during summertime. The summertime under-predictions of PM2.5 in
theNPB domain appear to be related to under-predictions of the organic
carbon components (as illustrated in Fig. 10).

Frequency plots have been used to assess long term performance of
air quality simulations for O3 (Winner and Cass, 1999). Fig. 9 shows the
frequency distributions of predicted and observed 24-h averaged PM2.5

in 4 domains used in the current study. All available observations and
the matching model predictions within each 4-km domain are used to
generate the frequency distribution plots. For NPB, the predicted fre-
quency distributions generally agree well with the observations al-
though they tend to slightly under-predict the occurrence of lower
concentration events and over-predict the occurrence of higher concen-
tration events. The predictions also show longer tails in the frequency
distributions. This suggests that using the predicted concentrations
likely leads to an overestimation of the yearly cumulative population
ambient PM2.5 exposure in this domain. The observed frequency
Fig. 8.Mean fractional bias (MFB) ofmonthly averaged PM2.5 for the 4-kmdomains: (a) NPB, (b
and Russell (2006). Data points are color-coded by month.
distributions show an evident trend shifting towards lower concentra-
tions between2000 and2006. Althoughmodel predictions show similar
left-shifting trends from 2000 to 2004, the predicted peak in the con-
centration distribution increases from slightly below 10 μg m−3 to
about 12 μg m−3 between 2005 and 2006, leading to a significant bias
towards higher concentrations. As themeteorologymodel performance
does not vary much between 2000 and 2006, the reduction in the emis-
sions in 2005 might not be represented sufficiently by the 2005 NEI in
this region. The long term frequency distributions for CD, as shown in
the second column of Fig. 9, are similar to those for NPB. The modeled
frequency distributions tend to have longer tails to higher concentra-
tions and under-predict the frequency of lower concentrations. For SP
(third column of Fig. 9), the predicted frequency distributions agree
with the observations from 2000 to 2004. For 2005 and 2006, the pre-
dicted peak in the concentration distribution increases to approximate-
ly 15 μg m−3 while the measured peak decreases to approximately
5 μg m−3. For the WS domain, predicted frequency distributions show
excellent agreement with observations for all the years.

3.4. Major PM2.5 chemical component concentrations

While PM2.5mass concentration has been reported to associate with
adverse health outcomes, it has been hypothesized that the actual
mechanism of injury might be related with PM chemical components
(such as EC or trace metals). Thus it is essential to evaluate the major
PM chemical components before they are used in epidemiology studies
to associate exposure with adverse health outcomes. EC, OC, sulfate
(SO4

2−) and nitrate (NO3
−) are compared to measurements compiled

in US EPA's AQS system in the current study. AQS includes data from
the Chemical Speciation Network (CSN) and the Interagency Monitor-
ing of Protected Visual Environments network (IMPROVE), both provid-
ing 24-h average speciated PM2.5 every 1, 3 or 6 days. The CSN and
IMPROVE sites are mostly located in urban and national park/rural
areas, respectively (Simon et al., 2012). Blank correction was applied
to themeasured concentrations. Although some previous studies adjust
the EC and OCmeasurements (e.g. Held et al., 2004; Ying et al., 2008) to
account for the differences in the observed EC and OC concentrations
determined by the IMPROVE protocol (used by the IMPROVE sites)
and the predicted EC and OC concentrations based on source profiles
derived using the NIOSH protocol, this adjustment is not applied in
) CD, (c) SP, and (d)WS alongwith the performance goals and criteria suggested by Boylan
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Fig. 9. Frequency distribution of predicted and observeddaily PM2.5 as a function PM2.5mass concentration for eachdomain: (a)NPB, (b) CD, (c) SP, and (d)WS. X-axis is the concentration
with unit of μg m−3.
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this study as there are more CSN sites with many more observations and
their EC/OC measurements are based on the NIOSH protocol before 2007
(Simonet al., 2012). Predictedorganicmass (OM) concentrations are con-
verted to OC using an OM/OC ratio of 1.4 (Turpin and Lim, 2001 and the
references therein) to compare with observed OC concentrations.

Fig. 10 shows themonthlyMFB values of 24-h average EC and OC for
the NPB and CD domains. Model performance for the SP and WS do-
mains is not shown due to lack of observations. As shown in Fig. 10(a)
and (b), monthly averaged PM2.5 EC values for both domains are in
the range of 0.5 to 1 μg m−3. All of the MFB values are within the
model performance criteria and there is no obvious bias towards posi-
tive or negative MFB. This demonstrates that the model generally cap-
tures EC for all the years. Monthly average PM2.5 OC concentrations
are in the range of 2 to 5 μg m−3. Although majority of the MFB values
arewithin themodel performance criteria (Fig. 10(c) and (d)), it is clear
that OC is under-predicted by CMAQ with MFB values biased towards
negative values. More significant underestimations, typically occurring
in summertime, are likely associated with underestimation of second-
ary organic aerosol (SOA), as reported in many studies (for example,
see Matsui et al. (2009), Volkamer et al. (2006), and Zhang and Ying
(2011)).

Fig. 11(a) and (b) show thatmonthly averaged PM2.5 sulfate concen-
trations are in the range of 2 to 9 μg m−3. The majority of the MFB
values fall in the proposed performance goals and only one data point
in 2001 does not meet the model performance criteria. For the NPB do-
main, slight under-predictions of sulfate occur in summer months,

image of Fig.�9


Fig. 10.Mean fractional bias (MFB) of monthly averaged PM2.5 elemental carbon (EC) and organic carbon (OC) for the 4-km domains: (a) NPB, (b) CD, (c) SP, and (d)WS along with the
performance goals and criteria suggested by Boylan and Russell (2006). Data points are color-coded by month.
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especially when the observed sulfate concentrations are high. This is in
agreement with another study which shows ubiquitous sulfate under-
prediction in the continental US in summertime (Luo et al., 2011),
which is attributed to the overestimation of wet scavenging by the
CMAQ cloud module. As illustrated in Fig. 11(c) and (d), there are
fewer points for PM2.5 nitrate, especially for domain CD which only
has valid data for 2003, 2004 and 2005.Most of the data points arewith-
in the performance criteria and majority of the data points are within
the range of the performance goal. CMAQ slightly over-predicts the ni-
trate concentrations in wintertime and under-predicts the concentra-
tions in summertime for NPB, although the observed concentrations
are quite low throughout the year (less than 2 μg m−3 in wintertime
Fig. 11.Mean fractional bias (MFB) of monthly averaged PM2.5 elemental carbon (EC) and organ
the performance goals and criteria suggested by Boylan and Russell (2006). Data points are co
and 1 μg m−3 in summertime). For the CD domain, nitrate concentra-
tions are slightly higher. There are four data points that do not meet
the model performance criteria, indicating under-prediction in those
months.

Fig. 10 and Fig. 11 showmodel performance of individual PM2.5 com-
ponents. To further illustrate the ability of the model in PM2.5 predic-
tions, comparisons of observed and predicted 7-year average PM2.5

components for NPB and CD based on all available measurements and
the corresponding predictions are shown in Fig. 12. Due to lack of obser-
vations, domains SP andWSare not included in the analysis. The predic-
tions are slightly higher in EC and ammonium ion concentrations, and
lower in sulfate concentrations in the NPB domain. Predicted sulfate
ic compounds (OC) for the 4-km domains: (a) NPB, (b) CD, (c) SP, and (d)WS alongwith
lor-coded by month.
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Fig. 12. Comparison of observed and predicted 7-year averaged PM2.5 components for (a) NPB and (b) CD and comparison of observed and predicted monthly averaged PM2.5 OTHER for
(c) NPB and (d) CD. Units are μg m−3.
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and organic aerosol (OA) mass concentrations in the NPB domain are
lower than observations by approximately 1.5 μg m−3 and 1 μg m−3,
respectively, and predicted nitrate concentration is higher than obser-
vation by approximately 1 μg m−3. These results agree with results
shown in Figs. 10 and 11. For the CD domain, CMAQ model predictions
of average EC, sulfate, nitrate, and ammonium concentrations agree
closely with observations but OA is under-predicted by 1.5 μg m−3. In
both domains, mass concentration of other PM2.5 aerosol components
combined (OTHER) is significantly over-predicted by 3.5 to 6 μg m−3.

Several fugitive dust related factors likely contribute to the over-
prediction: 1) over estimation of the PM2.5 fraction of PM10 in fugitive
dust emission calculations (Pace, 2005a). Based on Pace (2005a) the
fractions might have been overestimated by approximately 70% on av-
erage; 2) overestimation of PM10 fugitive dust emissions. This could
be caused by improper treatment of near-source removal of fugitive
dust or overestimation of raw emissions before correction for the
near-source removal. Although county-specific transport fractions
(Pace, 2005b) have been applied in both 2001 CAIR and 2005 NEI to ac-
count for the near-source removal, the transportable fraction approach
lacks monthly variability, which would be expected due to seasonal
changes in vegetative cover. Further, the variability due to soil moisture,
precipitation, andwind speeds is not accounted for by themethodology.
Fig. 12(c) shows that for the NPB domain, observations do not show the
obvious seasonal variation predicted by the model, and are universally
lower than predictions at all times. However, Fig. 12(d) shows
that for the CD domain, observations are significantly lower than
predictions but there is no clear seasonal trend in both predictions
and observations. It appears that correct simulation of the OTHER
component requires improvement in PM2.5/PM10 split and PM10

emission estimations.
Although fugitive dust is usually the major source of the OTHER

component, many other sources, such as biomass burning, can also
have significant fractions of the OTHER component. Overestimation of
PM2.5 emission from these sources can contribute to the overestimation
of the OTHER components aswell. In addition, theOTHER component in
PM2.5 emission profiles is usually estimated by the difference between
measured PM2.5 mass emission rate and the resolved PM2.5 compo-
nents. Error in the PM component measurements such as aerosol
water content estimation and organic aerosol mass (which requires
estimated organic carbon to organic mass ratio) can lead to artificial in-
flation of the OTHER component (Pace, 2005a). A study of the sources of
the PM components and PM speciation profiles is needed to understand
the underlying causes of the over-prediction of the OTHER PM
components.

4. Discussions and conclusions

The WRF model generally over-predicts temperature in all of the
four study domains, withMB values as high as 2 K, although themonth-
ly averaged MB and GE values are generally within the recommended
performance criteria by McNally (2009). WRF model performance for
water vapor content is satisfactory for spring, summer, and fall, but
not wintertime when significant biases and errors occur. Deviation in
the water vapor concentrations could affect predictions of OH radical
formation during the day. It can also affect particle hygroscopic growth.
However, it is not obvious in this study that wintertime deviation in the
water vapor content has affected gas or PM model performance. Wind
speed is adequately predicted by the WRF model and generally falls in
the model performance criteria recommended by Emery et al. (2001)
with a general trend of over-prediction, as reflected in the positive MB
values in three of the four domains. The over prediction of wind
speed, typically occurs at the low wind range by the WRF model, has
been previously noted in a number of studies (see Hu et al., under
review-b and the references therein). Wind directions, especially in
summer months, are not well reproduced with GE values as large as
50°. However, observation nudging is not used in theWRF simulations,
while the meteorology simulations reported in Emery et al. (2001)
study applied observation nudging, which improves the model perfor-
mance at observation locations. Inaccuracy in thewind direction can af-
fect CMAQ model performance of all species, especially in high spatial
resolution simulations.

The pollutant concentrations predicted by CMAQ are generallywith-
in the model performance criteria. O3 performance meets the EPA
criteria (MNB within ±0.15, AUP within 0.2 and NGE lower than 0.25)
except for under-predictions of a fewmonths for the SP domain. Perfor-
mance of PM10 is generally satisfactory withmean fractional bias (MFB)
within ±0.6, but a large under-prediction in springtimewas frequently
observed. Performance of PM2.5 and its measured components is mostly
within performance goals suggested by Boylan and Russell (2006) ex-
cept for organic carbon (OC), which is universally under-predicted
with MFB values as large as−0.8. The predicted frequency distribution
of PM2.5 generally agreeswith observations although the predictions are
slightly biased towards more frequent high concentrations in most
areas. Elemental carbon (EC), nitrate and sulfate concentrations are
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alsowell reproduced. The other unresolved PM2.5 components (OTHER)
are significantly overestimated bymore than a factor of 2. No conclusive
explanations can be made regarding the possible cause of this universal
overestimation, which warrants a follow-up study to better understand
this problem.

Based on the authors' knowledge, this is the first study for the east-
ern United States that uses a spatial resolution higher than 12 km in
long term air quality simulations for health effect analysis. Detailed per-
formance statistics reported in this study can be served as a reference
for future high spatial resolution CTM applications.
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