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ABSTRACT

A fully compressible, three-dimensional, nonhydrostatic model is developed using a semi-implicit scheme to
avoid an extremely small time step. As a result of applying the implicit scheme to high-frequency waves, an
elliptic partial differential equation (EPDE) has been introduced. A multigrid solver is applied to solve the
EPDEs, which include cross-derivative terms due to terrain-following coordinate transformation.

Several experiments have been performed to evaluate the model as well as the performance of the scheme
with respect to tolerance number, relaxation choice, sweeps of prerelaxation and postrelaxation, and a flexible
hybrid coordinate (FHC).

An FHC with two functions (base and deviation functions) is introduced. The basic function provides constant
vertical grid spacing required in the multigrid solver, while the deviation function helps to adjust the vertical
resolution.

1. Introduction

In the past, numerical weather prediction models had
to use the governing equations with the hydrostatic ap-
proximation in order to avoid acoustic waves in the
vertical direction. When high-frequency acoustic waves
exist, an exceedingly small time step is required to pre-
vent numerical instability of the explicit time-stepping
scheme (Mendez-Nunez and Carroll 1994; Hsu and Sun
2001). Fully compressible nonhydrostatic models,
which include sound waves, have become more popular
in recent atmospheric modeling due to the improvement
of numerical techniques and the rapid increase of com-
puting resources. The explicit time-splitting scheme
(Gadd 1978) implemented in nonhydrostatic models
(Klemp and Wilhelmson 1978) has significantly reduced
computational time. The development of the semi-im-
plicit scheme (Robert 1969) was a remarkable milestone
in the development of numerical techniques. The use of
the semi-implicit scheme in nonhydrostatic models has
relaxed the extremely small time step constraint (Tapp
and White 1976; Tanguay et al. 1990; Cullen 1990;
Juang 1992; Golding 1992; Kapitza and Eppel 1992;
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Robert 1993; Pinty et al. 1995; Simmons and Temperton
1996; Skamarock et al. 1997).

In some fully compressible nonhydrostatic models,
only acoustic waves are calculated implicitly (Tapp and
White 1976; Juang 1992; Laprise 1992), and the time
step is constrained by the propagation speeds of gravity
waves. Here, we apply the implicit scheme to both
acoustic and gravity waves, as in Tanguay et al. (1990),
Cullen (1990), Golding (1992), and Pinty et al. (1995).
It is noted that our model has differences from theirs
because we keep the cross-derivative terms, due to the
terrain-following coordinate, in the elliptic partial dif-
ferential equation (EPDE) of the Exner function per-
turbation. Usually, a huge multiband sparse matrix
(;300 000 3 300 000) of the EPDEs is encountered
for high-resolution nonhydrostatic models. Scientists
have applied different methods to avoid calculating this
huge multiband sparse matrix. With the use of the ex-
plicit time-splitting scheme, only vertical acoustic
waves are calculated implicitly, while horizontal acous-
tic waves (Lamb waves) are calculated explicitly. Under
this condition, the horizontal resolution should not be
too high in order to avoid the requirement of a small
time step. Some scientists (Juang 1992; Cullen 1990;
Golding 1992; Pinty et al. 1995) also suggest integrating
the cross-derivative terms explicitly in order to simplify
the equations to become Poisson- or Helmholtz-type
equations, which are more easily solved. However, nu-
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FIG. 1. Schedule of grids (from left to right) for (a) V cycle, (b)
W cycle, and (c) full multigrid V cycle schemes on four levels (adopt-
ed from Fig. 19 of Briggs 1987). Here, h is the finest grid level and
8h is the coarsest grid level.

merical instability may occur over steep mountains with
this kind of approach (Ikawa 1988; Skamarock et al.
1997).

There are different ways to solve linear EPDEs
mathematically, including direct methods [Gaussian
elimination, Fourier and cyclic reduction, and lower-
upper (LU) triangular decomposition] and iterative
methods [Jacobi, Gauss–Seidel, successive overrelax-
ation (SOR), alternative direction implicit (ADI), con-
jugate gradient, and multigrid]. The advantages and
disadvantages of different methods have been briefly
discussed in Fulton et al. (1986) and Kapitza and Eppel
(1992). The ADI scheme works well if there is no
cross-derivative term (Cullen 1990; Golding 1992; Pin-
ty et al. 1995). To integrate cross-derivative terms im-
plicitly, Kapitza and Eppel (1992) used the conjugate
gradient method, which is usually applied to symmetric
problems, with a preconditioner, and Skamarock et al.
(1997) used the conjugate residual method with a pre-
conditioner to solve the EPDEs. The convergence rate
of the EPDEs depends upon the condition number of
iteration matrix, which is the largest eigenvalue divid-
ed by the smallest one, and the number of distinct
eigenvalues. A good preconditioner can cluster the ei-
genvalues and result in a faster convergence rate. Con-
siderable experimentation is necessary to find a good
preconditioner.

The multigrid method is a very general and efficient
method for elliptic-type or Helmholtz-type problems
(Brandt 1977; Fulton et al. 1986; Ciesielski et al. 1986;
Bates et al. 1990; Bowman and Huang 1991: Adams et
al. 1992; Engquist and Luo 1997; Mertens et al. 1998;
Hiptmair 1998; Adams and Smolarkiewicz 2001). This
method is a nested iteration scheme that was originally
applied to boundary value problems. It is well known
that the convergence rate of standard iterative methods,
such as Jacobi, Gauss–Seidel, and SOR, are related to
the eigenvalues of the iterative matrix. For linear dis-
cretized partial differential equations, the eigenvalues
(convergence rates) are a function of the grid resolution.
These standard iterative methods rapidly eliminate the
error associated with short waves, but leave the long
waves almost unchanged. The iteration on a coarse grid
is much cheaper and more efficient since fewer points
are involved. This feature becomes the essence of the
multigrid method, which uses a coarse grid correction
(long-wave correction) to improve the convergence rate.
Different orders of relaxation cycling schemes can be
used, as shown in Fig. 1. A V cycle (Fig. 1a) or W
cycle (Fig. 1b) is preferred if a good initial guess is
provided. A full multigrid V cycle (Fig. 1c), which starts
from the coarsest grids, is suggested if there is no good
initial guess. Four processes are involved in this method:
prerelaxation, coarse grid solution, coarse grid correc-
tion, and postrelaxation. Figure 2 shows the procedure
of a three-level V(N1, N2)-cycle multigrid method, where
N1 and N2 are the numbers of relaxation sweeps for

prerelaxation and postrelaxation, respectively, and a
brief description is given in appendix A.

As mentioned earlier, the implicit scheme is applied
to both acoustic and gravity waves, and therefore a set
of linear equations with a huge multiband sparse matrix
needs to be solved. Modelers have been looking for a
method, which is able to solve the EPDEs accurately
and efficiently, and which can be applied to calculate
this linear system with less constraint, such as consis-
tently integrating the cross-derivative terms implicitly.
Though the conjugate gradient method was used, Kap-
itza and Eppel (1992) mentioned that the iterative mul-
tigrid technique is the most efficient algorithm for Pois-
son-type problems. However, they argued that the mul-
tigrid method suffers from the requirement that the
number of grid intervals must be a power of 2. In fact,
this constraint can be slightly relaxed if the matrix can
be reasonably calculated by direct solvers or by re-
peated relaxation sweeps on the coarsest grids. It seems
that the multigrid method has high potential for effi-
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FIG. 2. The procedure of a three-level V(N1, N2) cycle multigrid
method.

ciently solving the linear EPDEs. This method is not
as popular in the atmospheric sciences as are the con-
jugate gradient and conjugate residual methods. More
investigation might be both interesting and necessary
in order to learn the characteristics of this method and
to learn the appropriateness of applying it to atmo-
spheric models. For these reasons, the multigrid meth-
od is chosen for use in this study, with the primary
objective being to investigate the efficiency and ac-
curacy of this method.

The multigrid solver developed by Adams [mud3cr;
Adams and Smolarkiewicz (2001)] is applied to this
study since this package is quite comprehensive. (This
solver is available on the World Wide Web at http://
www.scd.ucar.edu/css/software/mudpack.) Mud3cr
computes the second-order finite-difference approxi-
mation to three-dimensional linear nonseparable EPDEs
with cross-derivative terms. A Gauss–Seidel iteration is
applied to each level and a block Gaussian elimination
method is used to solve the linear equations at the coars-
est grid level. The full weighting restriction and the
multilinear interpolation (appendix A) are used. The size
of grid intervals is not restricted to a power of 2 (Adams
1989), but still needs to satisfy the formula of 2x 3 y,
where x is a non-negative integer and y is a prime num-
ber. Small prime numbers are recommended as de-
scribed in the package. A four-color ordering scheme,
which makes the solver converge faster and makes it
suitable for parallelizing, is implemented. The conver-
gence criteria are defined as a function of the maximum
vector norm, and are introduced in section 3. Many
options are provided in this package, and several fea-

tures are tested in this study, such as different relaxation
choices (point by point or line by line), different tol-
erance numbers, and different sweeps of prerelaxation
and postrelaxation. The choice of point-by-point or line-
by-line relaxation is important for efficient convergence
and it can approximately be determined by the coeffi-
cients of the EPDEs. However, experimentation might
be required in some cases. Detailed information on this
package is found in Adams (1989, 1991) and Adams
and Smolarkiewicz (2001).

In general, atmospheric models use very fine reso-
lution in terms of height or hydrostatic pressure in the
lower troposphere. In this model, uniform vertical, as
well as horizontal, grid spacing is required because it
is a feature of the multigrid solver. To achieve the
constant grid spacing with nonuniform height intervals
in the vertical direction, one of the possibilities is to
apply a monotonic function to general terrain-follow-
ing coordinates, similar to that done in the Canadian
Mesoscale Compressible Community model (Thomas
et al. 1998) and the German Deutscher Wetterdienst
(DWD) Lokal-Modell (Thomas et al. 2000). Here, we
propose a flexible hybrid coordinate, which is also ter-
rain following and has the features of the (modified)
hybrid coordinate (Arakawa and Lamb 1977; Simmons
and Burridge 1981; Simmons and Strüfing 1981), to
meet the requirement of constant grid spacing. The
flexible hybrid coordinate is briefly introduced in sec-
tion 2. The description of the nonhydrostatic model is
given in section 3 and the emphasis is put on solving
the high-frequency wave equations. In section 4, three
experiments are carried out to validate the model per-
formance and to test the efficiency and accuracy of the
multigrid method. Finally, a brief summary is given in
section 5.

2. Flexible hybrid coordinate

Either pressure or height can be used to define the
flexible hybrid coordinate (FHC), sf. Here, we only pre-
sent sf (z), which is the one used in this model. In phys-
ical space, z at any grid point is split into three parts:
the surface height (zs), base height (zb), and deviation
height (zd). The implicit relationship between sf (z) and
z can be expressed as

z 5 z 1 F (s )(z 2 z ) 1 F (s )(z 2 z ) , (1)s b f t s max d f s max s

| | | |
z z

z zb d

where zt is the height at the model top, and zs max is the
maximum surface height within the domain; Fb and Fd

are termed base and deviation functions, respectively;
sf has the value 1 at the surface and then monotonically
decreases with height to 0 at the model top, while the
base (Fb) and deviation (Fd) functions are 0 at the surface
and 1 at the model top according to their definitions
here. The definitions of Fb and Fd depend upon the pre-
ferred vertical structure.
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FIG. 3. The vertical cross section of sf surfaces with a linear de-
viation function Fd 5 1 2 sf (dashed lines), and a hyperbolic tangent
deviation function Fd 5 [tanh(X) 2 tanh(C1)]/[tanh(C2) 2 tanh(C1)]
(solid lines), where C1 5 24, C2 5 1, and X 5 C2 2 (C2 2 C1)sf.
A linear base function Fd 5 1 2 sf is used. The thick lines have the
same value of sf.

The base function is mainly designed to meet the
requirement of the constant vertical interval in the mul-
tigrid solver. A segment of any function can be chosen
to present Fb, as well as Fd, in sf (z) as long as it is
well defined, satisfies boundary conditions, and mono-
tonically decreases with sf . Suggested functions are
hyperbolic tangent, polynomial, and exponential func-
tions.

The deviation height could be used to assist the ad-
justment of the vertical resolution when the surface to-
pography [or pressure in sf (p)] varies significantly. Fig-
ure 3 shows the vertical cross section of sf surfaces
when two different deviation functions are used with
the same linear base function. Both sf’s have the same
resolution at the column of mountain peak, but the hy-
perbolic tangent deviation function (solid lines) gives a
better resolution in terms of height at the valleys than
the linear one (dashed lines) does. The difference of the
resolutions can also be seen from the thick solid and
dashed lines (Fig. 3), which present the same sf surface
of 0.78. This higher resolution in the lower troposphere
at the valleys due to the use of a hyperbolic tangent
deviation function might be able to improve some sim-
ulations of boundary layer phenomena. It is noted that
the usual s–z coordinate (zt 2 z)/(zt 2 zs) is a special
case of sf (z) when Fb 5 Fd 5 1 2 sf (dashed lines in
Fig. 3). Therefore, the deviation function in FHC does
provide more flexibility than the usual s coordinate
does.

A brief description of how to choose different co-
efficients in the hyperbolic tangent function, as in the
formula in the caption of Fig. 3, might be useful. Here,
C1 (sf 5 1) and C2 (sf 5 0) are the starting and ending
points of the chosen segment tanh(X). The segment can
be used to define the base and deviation functions after
it is shifted downward for tanh(C1) [minus tanh(C1)]
and then normalized by the value of tanh(C2) 2

tanh(C1). The resolution in terms of height is related to
the slope of the segment. A smaller slope (]Fb/]X or
]Fd/]X) indicates a higher resolution. As the coefficients
(C1 5 24 and C2 5 1) used in Fig. 3, a higher resolution
is obtained at the lower troposphere due to a smaller
slope close to the starting point of C1. To experiment
with different coefficients is recommended in order to
get a better sense of this coordinate.

FHC is named not only for its flexibility, but also for
the feature it has in common with the (modified) hybrid
coordinate (Simmons and Burridge 1981; Simmons and
Strüfing 1981) when sf (p) is used, that is, that sf sur-
faces are (nearly) parallel to pressure surfaces in the
stratosphere if the deviation function, Fd, is chosen prop-
erly (Chen 1999).

3. Model description

a. Governing equations

The basic governing equations of this fully com-
pressible three-dimensional nonhydrostatic model in
Cartesian coordinates are as follows:

]u ]p
5 2C um 2 V · =u 1 D , (2)p u u]t ]x

]y ]p
5 2C um 2 V · =y 1 D , (3)p y y]t ]y

]w ]p
5 2C u 2 g 2 V · =w 1 D , (4)p w]t ]z

]p R
5 2 p= · V 2 V · =p, (5)

]t Cy

]u
5 2V · =u 1 D , (6)u]t

where Eqs. (2)–(6) are the x, y, and z components of
the momentum equations, conservation of mass, and
thermodynamic equation. The symbols u, y, w, p, and
u are velocity components in the x, y, and z directions;
Exner function; and potential temperature, respectively.
The Exner function, p, is defined as

R /Cpp
p 5 ,1 2po

where p is pressure and po 5 1000 hPa. In addition, Cp

is the specific heat of air at constant pressure, R the gas
constant, V the three-dimensional velocity, mu the map-
ping factor at the u point, my the mapping factor at the
y point, and g the gravitational acceleration.

As mentioned earlier, FHC in terms of height, sf (z),
is applied to this model. The base function Fb(sf) and
deviation function Fd (sf) are chosen case by case in
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TABLE 1. Sixteen runs (four groups) with different base functions (Fb), grid intervals, tolerance numbers, time steps, and relaxation choices
are set up for the experiment of linear mountain waves. In group 1, the formula of the hyperbolic tangent base function Fb (tanh) is the
same as the hyperbolic tangent deviation function used in Fig. 3 except C1 5 22.2 and C2 5 0.1. An exponential function, Fb(exp) 5 exp[ln
2 3 (1 2 sf )] 2 1, is used in group 2. A linear base function is used in both group 3 and 4. In column 3 ‘‘point’’ and ‘‘line’’ indicate the
choices of point-by-point and line-by-line relaxations, respectively. Same domain and the V(1, 1) multigrid cycle are used for all runs.

Group Runs Relaxation
Tolerance
number Fb

Grid intervals

x sf Dt

1 TANH P 1
TANH L 1
TANH P 001
TANH L 001

Point
Line
Point
Line

0.1

0.001

fb (tanh) 256 160 10 s

2 EXP P 1
EXP L 1
EXP P 001
EXP L 001

Point
Line
Point
Line

0.1

0.001

Fb (exp) 256 160 10 s

3 LIN P 1
LIN L 1
LIN P 001
LIN L 001

Point
Line
Point
Line

0.1

0.001

1 2 sf 256 160 10 s

4 LINH P 1
LINH L 1
LINH P 001
LINH L 001

Point
Line
Point
Line

0.1

0.001

1 2 sf 512 320 5 s

order to meet the desired physical vertical resolutions
in section 4. The potential temperature (u), Exner func-
tion (p), and pressure (p) are divided into mean fields
[ (z), (z), and (z)] and perturbation fields [u9(x, y, z,u p p
t), p9(x, y, z, t), and p9(x, y, z, t)]. Mean fields are
assumed hydrostatic balance, and is expressed as fol-p
lows:

R /Cpp
p 5 .1 2po

The mean temperature ( ) is calculated from andT u p
using a Poisson equation, and it is also a function of
height. After substituting mean and perturbation fields
into Eqs. (2)–(6), the mean pressure gradient forces dis-
appear (the vertical one is canceled by the gravitational
force); ]p/]t becomes ]p9/]t in (5) and ]u/]t becomes
]u9/]t in (6).

b. Numerical methods

In order to relax the small time step constraint due
to high-frequency acoustic and gravity waves, the
semi-implicit scheme (Robert 1969) is applied. The
low-frequency waves are calculated explicitly, while
the high-frequency waves are calculated implicitly. In
this section, most attention is paid to solving high-
frequency wave equations. A staggered Arakawa C–
Lorenz grid is used with the pressure and temperature
located at the same levels as horizontal velocity com-
ponents.

To solve the governing equations, we first advance
prognostic variables with advection terms using a
fourth-order advection scheme (Sun 1993) in the hori-
zontal direction and a second-order Crowley advection
scheme (Crowley 1968) in the vertical direction. For an

open boundary condition, the upstream method and the
second-order Crowley scheme are applied to lateral
boundaries, and the upstream method is also applied to
the upper boundary. A free-slip boundary condition is
imposed at the lower boundary. Second, the prognostic
variables are advanced with eddy diffusion terms ex-
plicitly based on Durran and Klemp (1983).

Finally, the pressure gradient forces and divergence
are evaluated. By the chain rule, the partial differenti-
ation relationships between Cartesian coordinates and
flexible hybrid coordinates are as follows:

]s] ] ] ] ]f
5 2 5 2 B ,x) ) )]x ]x ]x ]s ]x ]sf fz s sf f

]s] ] ] ] ]f
5 2 5 2 B , andy) ) )]y ]y ]y ]s ]y ]sf fz s sf f

]s] ] ]f
5 5 B ,z)]z ]z ]s ]sf f

where Bx 5 ]sf /]x, By 5 ]sf /]y, and Bz 5 ]sf /]z. After
transferring from Cartesian coordinates to flexible hy-
brid coordinates, the equations for high-frequency
waves become

]u ]p9 ]p9
1 C um 2 C um Bp u p u x]t ]x ]sf

]p9 ]p9
5 2C u9m 1 C u9m B , (7)p u p u x]x ]sf

]y ]p9 ]p9
1 C um 2 C um Bp y p y y]t ]y ]sf

]p9 ]p9
5 2C u9m 1 C u9m B , (8)p y p y y]y ]sf
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]w ]p9 u9 ]p
1 C uB 2 g 5 2C u9B , (9)p z p z]t ]s u ]sf f

]p9 R R
1 p= · V 5 2 p9= · V, (10)

]t C Cy y

]u9 ]u
1 wB 5 0. (11)z]t ]sf

Only terms on the left-hand sides of (7)–(11) are inte-
grated implicitly, while terms on the right-hand sides
are evaluated explicitly. An implicit scheme with un-
centered coefficient a (Cullen 1990; Juang 1992) is ap-
plied. For convenience, we define any prognostic var-
iable, M, such that Mn is the variable at the current time
step n, M* is the updated variable after the integration
of the eddy diffusion, M** is the temporary prognostic
variable for integrating the high-frequency waves, and
Mn11 is the variable at the next time step n 1 1. In order
to save memory, only the Exner function perturbation
is expressed as

n ap9 5 ap9** 1 (1 2 a)p9 5 p9 .

Other predictors, M, are expressed as

M 5 aM** 1 (1 2 a)M*,

since the differences between M* and Mn are small. Here,
0.5 , a # 1 is used to guarantee unconditional stability
and a test of the a value is examined in section 4.

After applying the implicit scheme to the left-hand-
side terms of (7)–(11) and discretizing time derivatives,
we obtain

a au** u* ]p9 ]p9
5 2 DtC u 1 DtC uB , (12)p p xm m ]x ]su u f

a ay** y* ]p9 ]p9
5 2 DtC u 1 DtC uB , (13)p p ym m ]y ]sy y f

a]p9 u9**
w** 5 w* 2 DtC uB 1 Dta gp z ]s uf

u9*
1 Dt(1 2 a) g, (14)

u

DtR
p9** 5 p9* 2 p

Cy

]u**/m ]u*/mu u2 23 m a 1 m (1 2 a)p p[ ]x ]x
]u**/m ]u*/mu u2 22 m aB 2 m (1 2 a)Bp x p x]s ]sf f

]y**/m ]y*/my y2 21 m a 1 m (1 2 a)p p]y ]y
]y**/m ]y*/my y2 22 m aB 2 m (1 2 a)Bp y p y]s ]sf f

]w** ]w*
1 aB 1 (1 2 a)B ,z z ]]s ]sf f

(15)

]u
u9** 5 u9* 2 Dtaw**Bz]sf

]u
2 Dt(1 2 a)w*B , (16)z]sf

where mp is the mapping factor at the point of pressure.
In addition, w** can be obtained from (14) and (16)
and expressed as

ag ]u ]p9 u9*
2w* 1 2 Dt a(1 2 a) B 2 DtC uB 1 Dtgz p z[ ]u ]s ]s uy f f

w** 5 , (17)
E

where

2 2E 5 1 1 Dt g(a /u)B (]u /]s ).z f

The calculation of w** should involve the calculation
of the inverse of a tridiagonal matrix if the space is
discretized. Here, we keep the continuous form in space
to simplify the calculation of w**, which will reduce
the complexity of the EPDE of the Exner function per-
turbation later on. In Thomas et al. (2000), the Arakawa
C–Lorenz grid was also implemented, but they used
temperature, pressure, and vertical momentum equa-
tions to calculate w without mass lumping.

After substituting (12), (13), and (17) into (15) and
reorganizing terms, we can obtain an EPDE with two

cross-derivative terms for the linear part of high-fre-
quency waves. The final form of the EPDE is

2 2 2 2] p9** ] p9** ] p9** ] p9**
C 1 C 1 C 1 Cxx yy zz xz2 2 2]x ]y ]s ]x]sf f

2] p9** ]p9** ]p9** ]p9**
1 C 1 C 1 C 1 Cyz x y z]y]s ]x ]y ]sf f

1 C p9** 5 r,e (18)

where the formulas of the coefficients Cxx, Cyy, Czz, Cxz,
Cyz, Cx, Cy, Cz, and Ce, and the source/sink term r, are
given in appendix B. The C coefficients on the left-hand
side of (18) are independent of time and, therefore, only
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need to be calculated once. However, extra memory is
required to save these coefficients.

It is worth mentioning again that the cross-derivative
terms are kept on the left-hand side of (18) to ensure
that the model is more stable in steep-terrain simula-
tions. Only very few fully compressible nonhydrostatic
models have been done in a similar way (Skamarock et
al. 1997; Thomas et al. 1998, 2000). Equation (18) rep-
resents one point, and in general, more than 300 000
points are used in a three-dimensional nonhydrostatic
model. Therefore, it is necessary to solve a set of linear
equations with a matrix of (;300 000 3 300 000), and
the multigrid method is chosen to solve the EPDEs.
Instead of writing a new multigrid solver, the multigrid
solver mud3cr, which has second-order accuracy and is
restricted to the finite-difference operators, is applied.
The C coefficients and r term in (18) are calculated and
passed into the multigrid solver with the first guess of
p9n. The iteration is stopped when the maximum outer
iteration number is reached or when rmax , tol, where
tol is a given error tolerance number, and rmax is the
convergence criteria, which is defined as

\p9**(K ) 2 p9**(K 2 1)\
r 5 ,max

\p9**(K )\

where K and K 2 1 indicate the current and previous
iteration multigrid cycles, respectively, and \ \ is the
maximum vector norm and is used to compute the rel-
ative difference between two successive solutions. After
getting p9**, we can substitute it into (12), (13), and
(17) to calculate u**, y**, and w**, respectively. The
prognostic variables at the next time step (un11, y n11,
wn11, and p9n11) are finally obtained after we explicitly
integrate terms on the right-hand sides of equations (7)–
(10).

c. Boundary conditions of the Exner function of the
EPDEs

The condition p9** 5 0 is applied to the top boundary
and lateral boundaries in the x direction. For the bound-
ary condition in the y direction, p9** 5 0 is used if the
experiment is three-dimensional, and a periodic bound-
ary condition is used if the experiment is two-dimen-
sional (y direction is assumed homogeneous). At the
lower boundary, the velocity normal to the surface is
equal to zero, and therefore,

u**m B 1 v**m B 1 w**B 5 0. (19)p x p y z

As mentioned earlier, the Arakawa C–Lorenz grid is
used with the pressure, temperature, and horizontal ve-
locity components located at the same levels. However,
in order to satisfy the lower boundary condition, all
prognostic variables are located on the surface (hori-
zontal still staggered). The grid spacing is uniform be-
tween p**, and w is located between p**. Therefore,
the grid interval between w is not a constant (only half-
grid interval at the lower boundary). Similar grid points

are also arranged at upper and lateral boundaries. Sub-
stituting (12), (13), and (17) into (19) yields

m m B m m B]p9** ]p9** ]p9**u p x y p y
2 2 5 f , (20)1]s D ]x D ]yf

where

1
f 5 2 m (B u* 1 B y*)1 p x y5DtC uDap

g ]u
21 22 B E 1 2 Dt a(1 2 a) B w*z z[ ]u ]sf

u9*
212 E DtgBz 6u

n n nm m B m m B(1 2 a) ]p9 ]p9 ]p9u p x y p y
2 2 2 ,1 2a ]s D ]x D ]yf

and
2 2 21 2D 5 m m B 1 m m B 1 E B .u p x y p y z

In practice, Eq. (20) is approximately solved as

m m B m m B]p9** ]p9* ]p9*u p x y p y
5 f 1 1 .1]s D ]x D ]yf

4. Experiments

Three experiments, linear mountain waves (Queney
1948), a downslope windstorm (Lilly 1978), and a three-
dimensional thermal bubble, are carried out to dem-
onstrate the performance of the model and the efficiency
and accuracy of the multigrid solver. In order to compare
the model results with previous works and with the an-
alytical solution, the first two experiments are two-di-
mensional with the y direction homogeneous. The map-
ping factors (e.g., mp, mu, and my) are set to 1, the max-
imum outer iteration number is 30, and the uncentered
coefficient, a, is 0.65 (for the reason explained later).

a. Linear mountain waves

A linear mountain wave experiment is chosen after
Queney (1948). The nonlinear effects are suppressed
when the mountain is very shallow. Therefore, the nu-
merical results can be compared with the linear ana-
lytical solution. A bell-shaped ridge is imposed at the
center of the domain. The ridge is defined as h 5
hs /[1 1 (x/a)2], where the crest of the ridge, hs, is 10
m, and the half-width length, a, is 1000 m. The at-
mosphere is dry and the eddy diffusion is excluded. A
uniform horizontal mean velocity, 10 m s21, is imposed
for the whole atmosphere, which has a Brunt–Väisälä
frequency (N) of 0.01 s21. The sea level pressure, ver-
tical domain, horizontal domain in the x direction, and
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FIG. 4. (a) The surface pressure perturbation for the analytical
solution (ANALY) (dotted lines) and the model simulations of
TANHpPp1 (solid line), EXPpPp1 (long-dashed line), LINpPp1 (short-
dashed line), and LINHpPp1 (dashed–double-dot line) after a 10-h
integration. (b) The results in (a) are used to plot the errors of the
surface pressure perturbation of the model simulations.

surface temperature are 1000 hPa, 25 600 m, 51 200
m, and 300 K, respectively. How to properly handle the
open boundary condition is an important issue, but it is
not the primary concern of this study. Therefore, we
only simply apply the boundary conditions, which were
mentioned in section 3c, with sponge zones (30 bands
in the x lateral boundaries and one-fourth domain at
upper boundary) to absorb waves. Sixteen runs (four
groups) are set up, as indicated in Table 1, with the use
of a V(1,1) multigrid cycle. A linear deviation function
is applied to all runs. Different base functions and dif-
ferent numbers of grid intervals are examined in order
to see the influence of the resolution on the surface
pressure perturbation, as well as in the lower tropo-
sphere. Moreover, the convergence behavior of the mul-
tigrid method regarding different tolerance numbers,
and relaxation choices (point by point or line by line)
are tested. There are four grid intervals in the y direction,
and Dx 5 Dy is set in every run. A hyperbolic tangent
base function as described in the caption of Table 1 is
used in group 1. A very high resolution (;20 m) is
located near the surface and a relatively low resolution
(;420 m) is presented near the top. The exponential
base function, which is also given in the caption of Table
1, is utilized in group 2. The vertical resolution is about
140 m near the surface and 270 m near the top. A linear
base function (1 2 sf) is applied to the rest. The last
group has double grid intervals in both the x and sf

directions compared with the others. Therefore, the av-
erage vertical resolution over the whole domain is about
200 m in group 3, and about 100 m in group 4. A 200-
m horizontal resolution and a 10-s time step are used
in the first three groups; a 100-m horizontal resolution
and a 5-s time step are used in the last one. The model
integrates for 10 h at which time the solution approx-
imately reaches steady state.

Figure 4a shows the surface pressure perturbation for
the analytical solution of the nonhydrostatic mountain
waves (ANALY), and the model simulations of
TANHpPp1, EXPpPp1, LINpPp1, and LINHpPp1 after a
10-h integration, and Fig. 4b shows the discrepancies
of the surface pressure perturbation between the ana-
lytical solution and model simulations in Fig. 4a. Only
one run of each group is plotted since four runs in the
same group are very similar. It should be mentioned that
the analytical solution in Queney (1948) is different
from that in Fig. 4a, which is calculated with higher-
order accuracy (Hsu and Sun 2001). Weak high pressure
(;0.5 Pa) is built on the windward side of the ridge
since air is accumulated there and a minimum low pres-
sure center is located on the crest of the ridge as in-
dicated in Fig. 4a. Regarding the phases of the surface
pressure perturbations, the model simulations are quite
consistent with the analytical solution for all runs, al-
though most of the amplitudes are underestimated. The
root-mean-square errors of the surface pressure pertur-
bation in Table 2, as well as the plot of Fig. 4b, show
that group 1 is in the best agreement with the analytical

solution, followed by the results of group 4, group 2,
and group 3, in that order. The simulated result of the
surface pressure perturbation is strongly correlated to
the vertical resolution near the ground.

Figure 5 shows the potential temperature perturbation
for the analytical solution (dashed lines) and the model
simulation results (solid lines). The overall patterns of
the model simulations are quite comparable with the
analytical solution. For the model results, the amplitudes
are slightly underestimated, and the phases are slightly
shifted. Although the wave propagation from the surface
is well simulated in group 1, the resolution in the lower
troposphere is inhomogeneous and not sufficient. Thus,
it does not produce a better result (Fig. 5a and Table 2)
compared with group 4 (Fig. 5d and Table 2), which
has double grid intervals in each direction and a higher
time resolution. The root-mean-square errors of groups
3 and 4 in Table 2 indicate that the improvement in the
surface pressure (improved 46%) is faster than the po-
tential temperature (improved 33%) as resolution in-
creases, namely that the solution of the surface pressure
perturbation, which is obtained by solving EPDEs, is
more sensitive than the solution of the potential tem-
perature perturbation. It is noted that the total central
processing unit (CPU) times in group 4 are much more
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TABLE 2. The average iteration numbers in terms of the multigrid V cycles per time step are presented. The root-mean-square errors of
the surface pressure perturbation ( ) and the potential temperature perturbation (u9) are calculated within the plotting domain of Figs. 4p9s
and 5, respectively.

Group Runs

Average iteration
no. of V (1, 1)
cycles per time

step
CPU time

(h)

Root-mean-square error

p (Pa)9s u9 (K)

1 TANH P 1
TANH L 1
TANH P 001
TANH L 001

1.020
1.073

13.115
6.596

2.06
2.33
7.04
7.05

0.130 3 1021

0.129 3 1021

0.131 3 1021

0.129 3 1021

0.153 3 1022

0.153 3 1022

0.153 3 1022

0.153 3 1022

2 EXP P 1
EXP L 1
EXP P 001
EXP L 001

1.023
1.021
6.337
6.131

2.18
2.35
4.64
6.71

0.315 3 1021

0.311 3 1021

0.304 3 1021

0.304 3 1021

0.166 3 1022

0.166 3 1022

0.166 3 1022

0.166 3 1022

3 LIN P 1
LIN L 1
LIN P 001
LIN L 001

1.024
1.023
6.011
6.253

2.06
2.30
4.12
6.84

0.435 3 1021

0.432 3 1021

0.424 3 1021

0.424 3 1021

0.172 3 1022

0.172 3 1022

0.172 3 1022

0.172 3 1022

4 LINH P 1
LINH L 1
LINH P 001
LINH L 001

1.019
1.019
8.091
7.906

19.74
25.45
44.70
92.40

0.233 3 1021

0.223 3 1021

0.227 3 1021

0.227 3 1021

0.115 3 1022

0.115 3 1022

0.114 3 1022

0.114 3 1022

than four times those in group 3 when only four times
grid intervals are used in group 4. We suspect that this
performance anomaly is due to virtual memory effects.
The initial case was designed to use most of the physical
memory on the processor. The runs in group 4 did not
fit into physical memory and required paging to and
from the disk.

The tolerance number is one of the major factors, which
determines the convergence rate and the accuracy of the
solution. Two tolerance numbers, 0.1 and 0.001, are tested,
and the model simulation errors are almost identical for
both numbers as indicated in Table 2 (e.g., TANHpPp1 vs
TANHpPp001, TANHpLp1 vs TANHpLp001, etc.). How-
ever, the average iteration numbers, which are defined as
the average numbers of V cycles per time step, are quite
different. The solutions are converged with one average
V(1,1) cycle when the 0.1 tolerance number is used. With-
out further improving accuracy, it takes 6–13 average
V(1,1) cycles to converge, depending on the different base
functions and relaxation choices, when the 0.001 tolerance
number is used. The tolerance number of 0.1 apparently
works quite well in this linear case.

The relaxation choice, point by point or line by line,
could also critically determine the convergence rate, and
the decision depends upon the coefficients of the EP-
DEs. Details are found in Fulton et al. (1986). The point-
by-point relaxation with the tolerance number of 0.1
works quite well in this experiment as indicated in Table
2. For a V cycle, to solve the EPDEs line by line takes
more time than to solve them point by point due to the
involvement of calculating tridiagonal matrices in the
line-by-line relaxation. Therefore, the total CPU time
spent on the second run (line by line) is about 10%–
30% more than that on the first run (point by point) for
each group with the tolerance number of 0.1, though
both iteration numbers are comparable. The grid boxes

in the lower troposphere are unisotropic (Dz K Dx) in
group 1. When the tolerance number of 0.001 is chosen,
the average iteration number with line-by-line relaxation
is half of that with point-by-point relaxation, but both
CPU times are comparable. As mentioned earlier, the
results with a tolerance number of 0.1 are good enough
in this case and the point-by-point relaxation is more
efficient than the line-by-line one.

Another setup with the same configuration of
TANHpPp1 but different sweeps of prerelaxation and
postrelaxation—V(2,2), V(1,2), and V(2,1)—is tested.
The root-mean-square errors of the surface pressure per-
turbation (;0.130 3 1021 Pa) and potential temperature
perturbation (;0.153 3 1022 K) for these three runs are
very similar to those in TANHpPp1. The average iter-
ation number is about 1.019 for all of them, and the
total CPU time for each of them is slightly more than
that for TANHpPp1, which uses a V(1,1) cycle. So far,
the V(1,1) cycle with point-by-point relaxation has per-
formed reasonably well in this nonhydrostatic linear
mountain wave case.

The uncentered coefficient, a, determines the insta-
bility and the damping strength of the short waves.
Therefore, its value might be one of the critical factors
in determining the model accuracy and the convergence
rate of the EPDEs. When the time derivative is discre-
tized using three time steps, the short waves are stable
if 0.5 , a # 1 (Cullen 1990). The waves damp the
most as a equals 1 (fully implicit scheme). However,
when a two-time-step scheme is applied, the proof of
the instability regarding the value of a is not that
straightforward (Simmons and Temperton 1996), but its
value is still within the same range (0.5–1). In Juang
(2000) and Ikawa (1988), a 5 0.8 was chosen. In this
study, instead of choosing an arbitrary number, a test
with different values of a is conducted with the same
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FIG. 5. The potential temperature perturbations (K) for the ana-
lytical solution (dashed lines) and the model simulation results (solid
lines) of (a) TANHpLp1, (b) EXPpPp1, (c) LINpPp1, and (d) LINHpPp1
after a 10-h integration.

configuration of TANHpPp1. Figure 6 shows the results
of the relative root-mean-square error and the average
iteration number. The root-mean-square error of the po-
tential temperature perturbation increases as a increases.
The error of the surface pressure perturbation behaves
quite similarly when a is greater than 0.60, but the
values rise as a approaches 0.5. With the value of 0.52,
the error grows one order larger in the potential tem-
perature perturbation and three orders larger in the sur-
face pressure perturbation. The model becomes unstable
when a # 0.51. The convergence rate is correlated to
the value of a, which indicates the damping strength of
the short waves or the smoothness of short waves. The
average iteration number drops fast at the beginning as
a increases and then approaches a value of 1 when a
is greater than 0.65. Considering the accuracy of the
pressure field and the convergence efficiency, a 5 0.65
is, therefore, adopted into this model.

A hydrostatic mountain wave test is also given after
Queney (1948). The initial conditions of the atmosphere,
the model setup, and the options in the multigrid solver
are the same as those in TANHpPp1, except that the half-
width length of the mountain is 10 km, the horizontal
domain is 640 000 m, the horizontal resolution is 2000
m, and the time interval is 20 s. The grid aspect ratio
(Dx/Dz) is about 100 in the lower troposphere. Different
tolerance numbers and relaxation choices are tested, and
the results are shown in Table 3. The CPU times in
Table 3 are less than those in TANHpPp1 since a larger
time step is used. The root-mean-square errors of the
surface pressure perturbation with point-by-point relax-
ation (Pp1 and Pp001) are slightly better than those with
line-by-line relaxation (Lp1 and Lp001), but all of them
are still considered to converge to similar solutions.
With similar accuracy, the point-by-point relaxation
with the tolerance number of 0.1 (Pp1) is still the most
efficient—the same conclusion as in the nonhydrostatic
mountain wave simulation.

b. Downslope windstorm

Strong downslope winds, which develop on the steep
lee sides of mountains, have received a great deal of
attention (e.g., Lilly 1978; Durran and Klemp 1983;
Smith 1985; Richard et al. 1990; Miller and Durran
1991; Doyle et al. 2000; Hsu and Sun 2001). To further
demonstrate the nonlinear behavior of this model and
to test the efficiency of the multigrid solver, we choose
to simulate the hydraulic jump (Fig. 7 in Lilly 1978)
and the strong downslope wind (Fig. 9 in Lilly 1978)
that occurred during the windstorm experiment on 11
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FIG. 6. The relative root-mean-square errors of the potential tem-
perature perturbation (long-dashed line) and the surface pressure per-
turbation (short-dashed line) with different uncentered coefficients
are plotted. The potential temperature perturbation is scaled by the
value of 0.196 3 1022 and the surface pressure perturbation is scaled
by the value of 0.241 3 1021. Solid line shows the average iteration
numbers in terms of V(1, 1) cycles.

TABLE 3. For the title of each run, P indicates point-by-point relaxation, L indicates line-by-line relaxation, 1 indicates the tolerance number
of 0.1, and 001 indicates the tolerance number of 0.001. The surface pressure perturbation ( ) error is calculated within the horizontalp9s
domain of 120 000 m, and the potential temperature perturbation (u9) error is calculated within the domain of 120 000 m 3 10 000 m).

Runs

Average iteration
no. of V (1,1)
cycles per time

step
CPU time

(h)

Root-mean-square error

p (Pa)9s u9 (K)

P 1
L 1
P 001
L 001

1.096
1.035
5.048
2.808

1.39
1.95
3.27
3.48

0.129 3 1021

0.140 3 1021

0.129 3 1021

0.140 3 1021

0.490 3 1022

0.492 3 1022

0.492 3 1022

0.492 3 1022

January 1972 in Colorado. The isentropic surfaces at
high levels were dragged down to low levels on the lee
side of the mountain, and strong winds (greater than 60
m s21) developed near the surface. The sounding at 1200
UTC 11 January 1972 at Grand Junction, Colorado, is
used as the initial condition (Table 4). As in the linear
mountain wave experiment, the same boundary condi-
tions are applied, and a bell-shaped mountain is also
imposed into the domain with a crest of 2000 m and a
half-width length of 10 km. The vertical domain is 35
km. A 30-band sponge zone is used at the top and both
lateral boundaries in the x direction, and the horizontal
resolution is 1 km. There are 384, 4, and 192 grid in-
tervals in the x, y, and sf directions, respectively. Both
linear base and deviation functions are the same as those
in group 3 in the linear mountain wave experiment. The
tolerance number is 0.1, the V(1,1) cycle is used, and
the point-by-point relaxation is chosen. A 5-s time step
is utilized and the model is integrated for 4 h.

Figures 7a and 7b show the solutions of the potential
temperature at 2 and 3 h, respectively. The hydraulic
jump is well formed after 2 h and continuously prop-
agates downstream with a speed of about 4 m s21. The
leading edge of the hydraulic jump becomes steeper and
steeper as time goes on. The initial zonal wind near the

surface is about 8–10 m s21, but reaches a maximum of
62.9 m s21 after 2 h of the simulation (Fig. 8a) and a
maximum of 72.9 m s21 after 3 h (Fig. 8b). The hy-
draulic jump and the magnitude of the downslope wind
compare reasonably with observational data, as well as
with most model results in Fig. 3 of Doyle et al. (2000).
In this experiment, it takes about 2.61 average V(1,1)
cycles to converge for point-by-point relaxation. The
model takes one to two more V(1,1) cycles to converge
at the very early stage of the simulations due to the
initial shock, and thereafter only one V(1,1) cycle. How-
ever, when the hydraulic jump appears, the iteration
number is back to three to four V(1,1) cycles. The av-
erage iteration number could be reduced to one average
V(1,1) cycle when a 2-s time step is applied to the
windstorm case. This feature is also pointed out in Ska-
marock et al. (1997), who used the conjugate residual
method. Two other tests are also carried out: point-by-
point relaxation with 0.001 tolerance number, and line-
by-line relaxation with 0.1 tolerance number. Both re-
sults are quite comparable with those in the original
test, which uses a 0.1 tolerance number and point-by-
point relaxation. However, it takes 6.365 average V(1,1)
cycles to converge with a tolerance number of 0.001
and point-by-point relaxation. The line-by-line relaxa-
tion with a 0.1 tolerance number takes only 1.51 average
V(1,1) cycles per time step, but it requires more CPU
time (5.26 h for point-by-point relaxation vs 6.37 h for
line-by-line relaxation).

The tests mentioned above are carried out on an IBM
RISC/6000 scalar machine with a 200-MHz processor
and 4 MB of L2 cache. Since the field indices for both
model and the multigrid solver mud3cr are (i, j, k), the
use of scalar machines might degrade the performance
of line-by-line relaxation, while vector machines will
not cause this problem. Therefore, another comparison
between point-by-point relaxation and line-by-line re-
laxation with a tolerance number of 0.1 is carried out
on a Cray J90 vector machine. The model CPU time
with the point-by-point relaxation is 16.63 h. How-
ever, the CPU time with line-by-line relaxation is only
8.94 h.

As mentioned in section 2, the deviation function can
be applied to adjust the vertical resolution in valley
regions. Another setup with a hyperbolic tangent de-
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TABLE 4. The sounding, which was collected at 1200 UTC 11
Jan 1972 at Grand Junction, CO, and used for the downslope
windstorm experiment.

p (mb) z (m) T (8C) RH (%) u (m s21)

850.00
807.00
800.00
750.00
700.00

1514.00
1929.00
1999.00
2510.00
3048.00

20.60
0.20

20.40
25.00
28.80

41.00
36.00
37.00
46.00
56.00

8.66
8.66
8.66
8.66

10.18
650.00
624.00
600.00
595.00
575.00
550.00
544.00
528.00
500.00

3618.00
3927.00
4222.00
4285.00
4540.00
4871.00
4952.00
5173.00
5574.00

213.10
215.50
217.50
218.00
218.40
220.40
220.90
220.40
222.90

73.00
83.00
79.00
77.00
75.00
91.00
95.00
94.00
75.00

13.52
15.91
17.00
17.00
20.97
24.98
25.98
28.98
30.70

475.00
450.00
432.00
400.00
353.00
350.00
300.00

5949.00
6342.00
6636.00
7182.00
8048.00
8109.00
9138.00

223.90
226.40
228.30
233.50
239.90
240.40
249.10

68.00
64.00
60.00
71.00
67.00

990.00
990.00

32.28
33.96
34.61
36.53
42.30
42.30
36.85

250.00
213.00
200.00
182.00
176.00
175.00
168.00

10 309.00
11 298.00
11 680.00
12 251.00
12 457.00
12 493.00
12 748.00

258.90
265.80
266.60
266.20
259.90
259.90
259.20

990.00
990.00
990.00
990.00
990.00
990.00
990.00

31.65
31.45
36.00
38.53
34.98
34.04
29.48

150.00
135.00
125.00
116.00
100.00

13 457.00
14 121.00
14 607.00
15 071.00
15 979.00

260.20
256.20
259.30
262.40
266.20

990.00
990.00
990.00
990.00
990.00

33.58
17.99
18.51
22.11
29.96

80.00
76.00
74.00
70.00
61.00
60.00
54.00
50.00

17 349.00
17 669.00
17 838.00
18 196.00
19 080.00
19 186.00
19 857.00
20 347.00

261.00
259.70
253.00
253.80
253.80
254.20
257.20
254.80

990.00
990.00
990.00
990.00
990.00
990.00
990.00
990.00

22.00
20.74
20.80
18.77
14.00
14.00
12.95
12.50

48.00
43.00
40.00
38.00
33.00
30.00

20 608.00
21 317.00
21 786.00
22 116.00
23 033.00
23 659.00

255.60
250.70
252.60
254.10
248.50
249.30

990.00
990.00
990.00
990.00
990.00
990.00

11.35
6.91
2.85
0.58
1.79
2.94

25.00
24.00
20.00
17.00
15.00

24 855.00
25 122.00
26 309.00
27 360.00
28 173.00

249.30
249.30
252.40
252.40
250.40

990.00
990.00
990.00
990.00
990.00

2.15
1.75
7.05
8.66
4.86

FIG. 7. The vertical cross sections of potential temperature (K) at
(a) t 5 2 h and (b) t 5 3 h with the point-by-point relaxation and
0.1 tolerance number.

viation function is examined. Below 6 km, the hyper-
bolic tangent case has a near-constant vertical resolution
of about 172 m, in contrast to the linear case where the
lower-troposphere vertical resolution varies between
172 and 182 m. Figure 9 presents the potential tem-
perature and zonal wind after a 4-h integration. We can
see that the hydraulic jump in the hyperbolic tangent
case (solid lines) moves faster than that in the linear
case (dashed lines). The flexibility of the deviation func-

tion, which cannot be achieved by usual s coordinates,
provides a good opportunity to further study the influ-
ence of the resolution on the model simulations in valley
regions. More investigation of the sf coordinate will be
interesting, but it is beyond the scope of this paper.

c. A three-dimensional thermal bubble

The signals of the previous mountain wave experi-
ments are mainly from the surface. Another experiment,
using a three-dimensional thermal bubble with the forc-
ing located in the lower troposphere, might be worth
testing. In this experiment, the terrain is flat, and the
atmosphere is calm and isentropic. A linear base func-
tion, Fb 5 1 2 sf, is chosen. There are 96, 96, and 160
grid intervals in the x, y, and sf directions, respectively.
The horizontal resolution (Dx and Dy) is 10 m and the
vertical resolution of sf is 1/160 (Dz 5 10 m). The
surface pressure is 1000 hPa, and the potential temper-
ature is 303 K (isentropic). Four lateral boundaries of
the Exner function perturbation are set to zero. The
initial bubble has a constant potential temperature per-
turbation of 0.5 K within a radius of 50 m and then
exponentially decaying to the boundaries. The formula
of the thermal bubble is
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FIG. 8. The vertical cross sections of zonal wind (m s21) at (a) t
5 2 h and (b) t 5 3 h with the point-by-point relaxation and 0.1
tolerance number.

FIG. 9. (a) The potential temperature, and (b) the zonal wind with
a hyperbolic tangent deviation function (solid lines) and a linear
deviation function (dashed lines) after 4-h integration in the wind-
storm experiment. The formula of the hyperbolic tangent deviation
function is the same as the one used in Fig. 3 except C1 5 23 and
C2 5 21. Only a small domain on the lee side of the mountain is
plotted.

0.5 if r # 50 m,
u9 5

2 250.5 exp[(r 2 50) /S ] if r . 50 m,

where r 5 and S2 2 2Ï(x 2 x ) 1 (y 2 y ) 1 (z 2 z )0 0 0

5 100 m. Here, x0 and y0 are the middle points of the
domain in the x and y directions, respectively, and z0 5
260 m. The time interval is 1 s, and the total integration
time is 18 min. A point-by-point relaxation, V(1,1) cy-
cle, and 0.1 tolerance number in the multigrid solver
are chosen.

Figure 10 shows the three-dimensional potential tem-
perature perturbation at 9, 12, 15, and 18 min. The ther-
mal bubble moves upward after release because of buoy-
ancy, and then it grows like a mushroom. The upper
part of the bubble gets thinner and thinner as time in-
creases and the bubble top breaks at 15 min. After 18
min of simulation, part of the bubble has moved out of
the domain through the upper boundary. The average
iteration number of the V(1,1) cycle is 1.07.

5. Summary

Here, we present a three-dimensional, fully com-
pressible, nonhydrostatic model. To overcome the ex-

ceedingly small time step required for high-frequency
waves, a semi-implicit scheme is applied to this model.
The use of the implicit scheme relaxes the extremely
small time step requirement, but a linear system with a
huge multiband sparse matrix of elliptic partial differ-
ential equations is encountered. The EPDEs become
more difficult to solve when the cross-derivative terms
are consistently integrated implicitly. The multigrid
solver, mud3cr, is applied to solve this set of EPDEs.

The uniform grid spacing is required in the multigrid
solver. To address this requirement, a new terrain-fol-
lowing coordinate, the flexible hybrid coordinate, is de-
signed. Two functions are introduced in the FHC (sf):
base (Fb) and deviation (Fd) functions. The base function
is simply used to meet the uniform grid spacing in the
multigrid solver, and the deviation function can be ap-
plied to adjust the vertical resolution, especially in the
valley regions or stratosphere. Different combinations
of base and deviation functions can present a variety of
vertical structures of the sf surfaces. The recommended
functions are exponential, hyperbolic tangent, and poly-
nomial.

Three experiments are provided to demonstrate the
performance of this nonhydrostatic model and the ef-
ficiency of the multigrid solver: one with linear moun-
tain waves (Queney 1948), one with a downslope wind-
storm (Lilly 1978), and one with a three-dimensional
thermal bubble. In the nonhydrostatic linear mountain
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FIG. 10. The time evolution of the three-dimensional thermal bubble. The isotropic potential
temperature perturbation of 0.07 K is plotted at (a) 9, (b) 12, (c) 15, and (d) 18 min. The domain
size is 980, 980, and 1600 m in the x, y, and z directions, respectively.

wave case, the model results are in very good agreement
with the analytical solution for all runs. A better surface
pressure is obtained with a higher resolution near the
surface, and a better potential temperature field in the
lower troposphere is simulated with double grid inter-
vals in each direction. This case is further used to di-
agnose the uncentered coefficient, a, and the value of
0.65 is considered as the optimal choice of this test in
terms of the accuracy and efficiency. The surface pres-
sure perturbation is calculated by solving the elliptic
partial differential equations, and its solution is rather
sensitive to the uncentered coefficient, more so than the
potential temperature. The hydrostatic mountain wave
simulations also show quite reasonable results. In the
downslope windstorm experiment, the model reproduc-
es the observed hydraulic jump and the magnitude of
the downslope wind reasonably well. The simulated
maximum wind occurs near the surface due to the im-
plementation of an inviscid lower boundary condition.
It is worth mentioning that the windstorm simulation
results are very similar to those from the National Tai-
wan University–Purdue model in Doyle et al. (2000),
which used a time-split explicit scheme to calculate
high-frequency waves. The windstorm case is also used
to examine the potential influence of the deviation func-
tion and the results do show some impact of the use of
different deviation functions. A three-dimensional ther-
mal bubble is tested to further demonstrate the reason-
able performance and the robustness of this model.

The multigrid method is not as popular in the at-
mospheric sciences as it is in engineering or some other
fields, since the coefficients of the EPDEs are quite com-
plicated in terrain-following coordinates, as well as be-
cause the method is more sophisticated to code than

others. One of the major purposes of this study is to
address the performance and efficiency of the multigrid
method when applied to nonhydrostatic atmospheric
models. Several tests with different tolerance numbers,
different relaxation choices (point by point or line by
line), and different sweeps of prerelaxation and postre-
laxation are examined. The use of the 0.001 tolerance
number does not improve the solutions, but requires
more CPU time. Both nonhydrostatic and hydrostatic
linear mountain waves, as well as the three-dimensional
thermal bubble simulation, take one average V(1,1) cy-
cle with point-by-point relaxation to converge. It is not-
ed that the very nonlinear problems, such as the wind-
storm case in this study, might need more iteration time
to converge. Therefore, besides the tolerance number,
the convergence speed may also depend on the property
of the fluid, namely that convergence might be more
difficult for a fast-changing fluid. Though the windstorm
simulation requires two to three average V(1,1) cycles
with point-by-point relaxation or one to two average
V(1,1) cycles with line-by-line relaxation to converge,
it is still quite efficient. Given enough accuracy, we
therefore, consider that the point-by-point, V(1,1) cycle
relaxation with 0.1 tolerance number gives a very good
performance for all experiments examined in this study
on scalar machines, even when the grid aspect ratio
(Dz/Dx) is much less than 1. It is worth mentioning that
the line-by-line relaxation is superior to point-by-point
relaxation for the windstorm case, which has a very
nonlinear fluid and the grid aspect ratio is much less
than 1, due to the order of the field indices of the model
and the multigrid solver. The trade-off of using implicit
methods is that extra memory is required for saving
coefficients of the EPDEs.
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Though we believe that the multigrid method is one
of the best iteration methods for solving elliptic-type
problems, more investigation is required. It seems that
the conjugate residual method with a preconditioner also
performs quite well, as discussed by Skamarock et al.
(1997). A detailed comparison between these two meth-
ods will be of interest and we leave it for future work.
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APPENDIX A

The Algorithm of a Three-Level Multigrid
V-Cycle Relaxation

In Fig. 2, assume that we are solving a set of linear
equations, AU 5 F, where A is a (n 3 n) matrix and
U and F are (n 3 1) vectors. For any vector or matrix
M, Mh indicates M at the finest grid level, M2h indicates
M at the second finest grid level, etc. Here, we simply
give five steps to illustrate the three-level V(N1, N2)
cycle relaxation scheme.

Step 1:
(a) Relax AhUh 5 Fh (prerelaxation). Assign an initial

guess to Uh at the finest grids. Use a relaxation scheme
to estimate an approximation solution of Uh with N1

sweeps. The relaxation scheme could be a Jacobi or
Gauss–Seidel type.

(b) Calculate rh(5 Fh 2 AhUh 5 Aheh), which is a
residual vector.

Step 2:
(a) Calculate F2h(5 rh). Here, is defined as a2h 2hI Ih h

mapping matrix, which maps rh at finer grids (subscript)
into F2h at next coarser grids (superscript). Similar def-
initions with different subscripts and superscripts are
used later.

(b) Relax A2he2h 5 F2h (prerelaxation). Assign an ini-
tial guess 0 to e2h. Apply the relaxation scheme to solve
the residual equation with N1 sweeps and get an ap-
proximation solution of e2h.

(c) Calculate r2h(5 F2h 2 A2h e2h).
Step 3:
(a) Calculate F4h(5 r2h).4hI2h

(b) Solve A4he4h 5 F4h to get the solution e4h at the
coarsest grids using direct or iterative methods. The
number of the coarsest grid intervals is not required to
be a power of 2.

Step 4:
(a) Update e2h(⇐e2h 1 e4h) (coarse grid correction).2hI4h

Here, is a mapping matrix, which maps e4h at coarser2hI4h

grids (subscript) into finer grids (superscript).
(b) Relax A2he2h 5 F2h (postrelaxation) for N2 sweeps

with the new initial guess e2h.
Step 5:
(a) Update Uh(⇐Uh 1 e2h) (coarse grid correction).hI2h

(b) Relax AUh 5 Fh (postrelaxation) for N2 sweeps
with the new initial guess Uh.

Repeat steps 1–5 until rmax , tol or until the maximum
outer iteration number of V cycle is reached. Here, rmax

is an error measurement, which is defined in section 3,
and tol is a tolerance number.

The operator moving a vector from finer grids to
coarser grids is called the restriction operator, such as

and . The simplest restriction operator is injection,2h 4hI Ih 2h

in which the vector on coarser grids simply takes its
values directly from the corresponding finer grid points.
Another popular one is the full weighting operator
(Briggs 1987; Briggs et al. 2000). In contrast, the op-
erator moving a vector from coarser grids to finer grids
is called the interpolation or prolongation operator, such
as and . In general, a linear interpolation is goodh 2hI I2h 4h

enough for the multigrid method.

APPENDIX B

The Coefficients of the Elliptic Partial
Differential Equation

Here are the formulas for the left-hand-side coeffi-
cients and source/sink term r of Eq. (18):

2 2 2 21 2 2C 5 C 5 Am u p , C 5 C [B 1 B 1 E B /m ], C 5 22C B , C 5 22C B ,xx yy p zz xx x y z p xz xx x yz yy y

]u ]u ]u ]u
2 2C 5 Am p 2 B , C 5 Am p 2 B ,x p x y p y1 1 2]]x ]s ]y ]sf f

](uB ) ](uB )](uB ) ](uB ) ](uB ) ]Ey yx x z2 21 2 22C 5 2Ap m 2 B 1 2 B 2 B E 1 uB E , C 5 21,z p x y z z e1 2[ ]]x ]s ]y ]s ]s ]sf f f

2 n 2 n 2 n 2 n 2 n n n n(1 2 a) ] p9 ] p9 ] p9 ] p9 ] p9 ]p9 ]p9 ]p9
r 5 2 C 1 C 1 C 1 C 1 C 1 C 1 C 1 Cxx yy zz xz yz x y z2 2 21 2a ]x ]y ]s ]x]s ]y]s ]x ]y ]sf f f f

] u9* ] w* ]u
21 21 C p9* 1 BaB E Dtg 2 aDt (1 2 a)g Be z z1 2 1 2[ ]]s u ]s u ]sf f f



NOVEMBER 2001 2675C H E N A N D S U N

]E u9* (1 2 a) ]u
22 22 BaB E Dtg 1 1 2 aDt gB w*z z1 2[ ]]s u u ]sf f

]u*/m ]u*/m ]y*/m ]y*/m ]w*u u y y2 211 B m 2 B 1 2 B 1 B (1 2 a 1 aE ) ,p x y z1 2[ ]]x ]s ]y ]s ]sf f f

where

2 2A 5 (R /C )Dt C a , and B 5 (R /C )Dtp .y p y
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