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ABSTRACT

This study investigates the impacts of climate change on meteorology and air quality conditions in Cal-

ifornia by dynamically downscaling Parallel Climate Model (PCM) data to high resolution (4 km) using the

Weather Research and Forecast (WRF) model. This paper evaluates the present years’ (2000–06) down-

scaling results driven by either PCM or National Centers for Environmental Prediction (NCEP) Global

Forecasting System (GFS) reanalysis data. The analyses focused on the air quality–related meteorological

variables, such as planetary boundary layer height (PBLH), surface temperature, and wind. The differences of

the climatology from the two sets of downscaling simulations and the driving global datasets were compared,

which illustrated that most of the biases of the downscaling results were inherited from the driving global

climate model (GCM). The downscaling process added mesoscale features but also introduced extra biases

into the driving global data. The main source of bias in the PCM data is an imprecise prediction of the location

and strength of the Pacific subtropical high (PSH). The analysis implied that using simulation results driven by

PCM data as the input for air quality models will likely underestimate air pollution problems in California.

Regional-averaged statistics of the downscaling results were estimated for two highly polluted areas, the

South Coast Air Basin (SoCAB) and the San Joaquin Valley (SJV), by comparing to observations. The

simulations driven by GFS data overestimated surface temperature and wind speed for most of the year,

indicating that WRF has systematic errors in these two regions. The simulation matched the observations

better during summer than winter in terms of bias. WRF has difficulty reproducing weak surface wind, which

normally happens during stagnation events in these two regions. The shallow summer PBLH in the Central

Valley is caused by the dominance of high pressure systems over the valley and the strong valley wind during

summer. The change of meteorology and air quality in California due to climate change will be explored in

Part II of this study, which compares the future (2047–53) and present (2000–06) simulation results driven by

PCM data and is presented in a separate paper.

1. Introduction

Because of its geographical location, complex to-

pography, diverse ecosystems, intricate mesoscale me-

teorological features, and a large amount of pollutant
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emissions, California (CA) is more vulnerable to climate

change than other areas in the United States (Snyder

et al. 2002; Leung and Gustafson 2005). For more than

a decade, CA has had serious summer ozone and winter

particulate matter (PM) problems, especially in the San

Joaquin Valley (SJV) and the South Coast Air Basin

(SoCAB) (Fig. 1a). The annual average PM2.5 con-

centration in SJV and SoCAB were 21.5 mg m23 and

19.7 mg m23, respectively, during 2007/08. These con-

centrations were the highest nationwide (Mahmud et al.

2010) and were much higher than the current National

Ambient Air Quality Standard of 15 mg m23. In the

years 2005–07, all of the ‘‘top six’’ counties with the

highest O3 concentrations over the entire United States

were located in SJV and SoCAB (Howard et al. 2010).

The pollutants in SJV are mainly products of fuel com-

bustion by automobiles and agricultural operations; the

prevailing wind also brings pollutant emissions from

the San Francisco Bay Area into the valley through

the Carquinez Strait. These pollutants are difficult to

ventilate out of the valley because of the surrounding

mountains. Stagnation events, which are characterized

by a shallow mixing layer and low surface wind, occur

in SJV during winter and summer. In addition, the de-

velopment of the boundary layer in SJV is suppressed by

the subsiding air associated with the valley wind during

summer. Thus, the pollutants are trapped close to the

surface. In SoCAB, there are large amounts of pollutant

emissions from fuel combustion processes and other hu-

man activities in Los Angeles. The presence of a marine

atmospheric boundary layer (MABL) inversion in the

coastal region of CA, formed by the heated subsiding

air associated with Pacific subtropical high (PSH) and

the low sea surface temperature (SST) attributed to the

coastal ocean upwelling, is also a key factor for the air

pollution problem in this region.

It is important to explore the future meteorology and

air quality conditions in CA to assess their societal

impacts and evaluate control strategies. By downscal-

ing global climate model (GCM) simulations to high-

resolution outputs, previous studies have shown that

climate change could induce changes in temperature, hu-

midity, precipitation, boundary layer mixing depth, etc.,

at regional scales and, consequently, cause changes in

regional air quality. Previous work in CA has used sta-

tistical downscaling to study climate change impacts on

air quality (Mahmud et al. 2008; Tagaris et al. 2007).

Statistical downscaling methods (Wilby et al. 1998;

Zorita and von Storch 1999) downscale GCM variables

directly to finer resolution with much higher efficiency

than dynamical downscaling. However, because the sta-

tistical relationships vary over different air basins, down-

scaled results are less reliable than those from dynamical

downscaling unless sufficient observations are available.

To date, the finest resolutions to which GCM variables

have been downscaled for regional air quality responses

to climate change have been by Jacobson (2008, 2010),

who examined feedbacks from climate and air pollution

to agriculture and local CO2 forcing with a resolution of

0.208 3 0.158 in CA and 0.0458 3 0.058 in Los Angeles.

FIG. 1. (a) Locations of SJV and SoCAB in CA. (b) Nested domains for WRF simulations. The black dots show the

locations of the observation stations ‘‘VIS’’ and ‘‘SAC.’’ The line in domain 3 (d3) crossing VIS indicates the location

of the vertical cross section in Fig. 14.
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However, these two studies spanned a relatively short

time period (i.e., one month in Jacobson 2008, and six

months for Los Angeles domain and two years for the

CA domain in Jacobson 2010). Caldwell et al. (2009)

used the Weather Research and Forecasting (WRF)

model to dynamically downscale Community Climate

System Model version 3 (CCSM3) data to 12-km hor-

izontal resolution for a 40-yr current period in CA with

fixed greenhouse gas concentrations. Their analyses fo-

cused on precipitation, surface temperature, and snow-

pack, showing that the WRF model has an internal

problem that prevents accurate predictions of precipi-

tation in this region. However, the surface temperature

predictions matched observations well. Both Bell et al.

(2004) and Leung and Ghan (1999) studied changes in

temperature and precipitation extremes in CA under

a scenario of doubled CO2 concentration. Duffy et al.

(2006) compared downscaling results from four combi-

nations of regional climate models (RCMs) and GCMs

for the western United States and found that the spatial

distribution of the meteorological variables can vary

substantially among different RCMs owing to different

physics processes and surface forcing. All of these stud-

ies have shown that biases in downscaled results are

largely inherited from the driving GCM. California has

particularly complex topography, which interacts with

large-, meso, and microscale flow patterns. It is difficult

to capture such comprehensive mesoscale features with

a RCM at relatively coarse resolutions. To improve the

RCM downscaling results in this region, simulations with

finer spatial resolution are required.

In this study, the WRF model was applied to dy-

namically downscale Parallel Climate Model (PCM)

(Washington et al. 2000) outputs under a business as

usual (BAU) scenario to 4-km resolution in CA. To the

best of our knowledge, there are no other dynamical

downscaling studies using the WRF model with such

a fine resolution to explore the climate change impacts

in this region. Two 7-yr periods (2000–06 and 2047–53)

have been chosen to study the influence of climate

change projections on meteorological variables relevant

to air quality. PCM has been reported to have low sen-

sitivity to increased atmospheric CO2 (Barnett et al.

2001; Duffy et al. 2006). However, it was argued that

models with higher climate sensitivity might have diffi-

culty satisfying the ocean constraint (Barnett et al.

2001). Thus, a time interval of approximately 50 years

was set between the current and future simulations in

this study to have a long enough study period for climate

changes to manifest. The ultimate goal of this study is

to investigate future air quality in CA, thus the analyses

are focused on air quality–related variables, such as

10-m wind speed (wsp10), 2-m temperature (T2), planetary

boundary layer height (PBLH), total days, and strength

of stagnation events, etc. As mentioned previously, er-

ror in the RCM downscaling results partially succeed

from GCM bias. To assess the effect of PCM data bias

on the WRF downscaling results, a counterpart of the

present downscaling simulations (2000–06) was con-

ducted with the same model configuration but driven

by Global Forecasting System (GFS) reanalysis data. As

Part I of this study, this paper analyzes the current 7-yr

climate (2000–06) with intercomparisons between GFS

and PCM data as well as their downscaling results for the

highly polluted SoCAB and SJV. During the analysis, it

was noticed that the summertime PBLH is exceptionally

shallow in SJV. This phenomenon was studied and the

possible reasons were explored. Part II of this study,

which is presented in a separate paper (Zhao et al. 2011),

compares present and future simulations driven by PCM

data to evaluate the impacts of climate change on mete-

orological conditions related to air quality, including

land–sea breeze, in CA.

The paper is organized as follows. The methodology

and numerical models are described in section 2. Sec-

tion 3 presents the selection of an optimal suite of physics

schemes for the region of interest. Section 4 contains

the comparison of the simulation results for the present

time period driven by PCM and GFS data, as well as an

investigation of the summertime low PBLH phenomenon

in SJV. Conclusions and remarks follow at the end.

2. Methodology and model description

a. Methodology

Dynamical downscaling uses an RCM to obtain regional-

scale, fine-resolution climate change information from a

coarse-resolution GCM (i.e., GCM data provide the

initial and lateral boundary conditions for the RCM).

This method maintains the large-scale features of the

climate projection from the GCM and adds a more de-

tailed depiction of mesoscale features (Hay and Clark

2003). Dynamical downscaling can thus be used to in-

vestigate the impacts of climate change on meteorology

and air quality in specific areas. In this study, WRF

model (Skamarock et al. 2007), a community mesoscale

meteorology model, was applied to dynamically down-

scale PCM data under the BAU future forcing scenario

(Dai et al. 2001) to investigate the meteorological con-

ditions and their changes in CA, especially SJV and

SoCAB. As described in the introduction, the air quality

in SJV and SoCAB are largely influenced by mesoscale

systems (i.e., valley wind, stagnation events, MABL, etc.),

which are not resolved by the coarse spatial (2.88 3 2.88)

and temporal (6 hourly) resolutions of PCM. The WRF

simulations with much finer resolution add substantive
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mesoscale details to the driving PCM, which are crucial

to study the air quality conditions in SJV and SoCAB.

Hourly averaged WRF outputs were calculated within

the model and saved every hour for three-dimensional

(3D) meteorological variables that can influence air pol-

lution, such as wind, temperature, and humidity. Two-

dimensional variables were also saved, including the

aforementioned variables at the surface level, the mix-

ing layer height, precipitation, etc. WRF performance

was evaluated with these variables. In addition, the

hourly averaged WRF outputs were used as the mete-

orological inputs for the University of California, Davis

(UCD)–California Institute of Technology (CIT) air

quality model (Kleeman and Cass 2001) in a differ-

ent study (Mahmud et al. 2010, manuscript submitted

to Environ. Sci. Technol.). It was necessary to simulate

across a 7-yr period to account for the ENSO cycle that

usually has a period of 6–8 years. Indeed, a major short-

coming of previous studies is that they fail to account

for ENSO effects when simulating climate impacts on

air pollution meteorology in California. Therefore, two

7-yr periods, 2000–06 and 2047–53, were chosen for

present and future simulations. The dynamical downscal-

ing approach at such fine resolution is computationally

expensive. Therefore, to alleviate the computation bur-

den while still supporting the calculation of annual av-

erage pollution concentrations— in the follow-up air

quality studies (Mahmud et al. 2010, manuscript sub-

mitted to Environ. Sci. Technol.) without bias toward

any season or time period—2 weeks out of every 6 weeks

(as shown in Table 1) are used instead of the complete

21 years (i.e., 14 years with PCM data for the 2 time

periods and 7 years with GFS data for the present time

period). The first three days’ simulations, which can be

highly influenced by unrealistic, unbalanced flow in the

initial conditions and the model spinup problem, were

discarded; therefore, each simulation included 17 rather

than 14 days. Because PCM only provides 28 days’

simulation for February in leap years, 29 February was

avoided by shifting simulation periods by one day for

leap years, introducing an offset of one day from the

normal year cases.

Simulations were also run using GFS reanalysis data

for initial and lateral boundary conditions. GFS rean-

alysis data are available every six hours with a horizontal

resolution of 18 3 18, and have been widely used to drive

regional climate simulations. This dataset assimilates

many observations, including satellite data and con-

ventional data, and, in general, is of good quality (Saha

et al. 2006). Therefore, identical simulations were car-

ried out using PCM or GFS reanalysis data for 2000–06

for comparison. The data bias of PCM can be estimated

by comparing the climatology between these two global

datasets; the extent to which this bias is propagated

through to the downscaling results can be identified by

driving simulations with both PCM and GFS data and

comparing the results.

b. PCM model

PCM is a fully coupled GCM. It is composed of the

National Center for Atmospheric Research (NCAR)

Community Climate Model version 3 (CCM3), the Los

Alamos National Laboratory Parallel Ocean Program

(POP), the sea ice model from the Naval Postgraduate

School, and a land surface biophysics model (Dai et al.

2004; Washington et al. 2000). The atmosphere compo-

nent of PCM has a T42 horizontal resolution, which is

approximately 2.8 degrees in latitude and longitude,

and 18 vertical hybrid sigma-pressure levels. The ocean

component of PCM has a higher resolution than most

other GCMs near the equator, which leads to stronger

El Niño signal and greater interannual tropical climate

variability (Washington et al. 2000). PCM simulations can

be conducted under different forcing scenarios. In this

study, the atmospheric component of the BAU B06.44

simulation, which spans the period of 1995–2099, were

used to provide initial and boundary conditions for WRF

downscaling. The greenhouse gas concentration and SO2

emissions applied in the BAU B06.44 scenario were de-

scribed in Dai et al. (2001). The emissions for the two most

important gases, CO2 and SO2, were generated using en-

ergy economics models, as the emissions of SO2 are largely

tied to the economic levels. The CO2 level in year 2100

represents an approximate doubling of the level in year

2000 (Dai et al. 2004). The atmospheric, land, and sea ice

conditions from a historical PCM simulation (case B06.28)

were used to initialize the BAU B06.44 simulation, while

the initial ocean conditions were derived from the assimi-

lated ocean data (Dai et al. 2004; Pierce et al. 2004).

c. WRF model and the interface between
WPS and PCM

WRF is a community mesoscale meteorology model,

which is suitable for both operational forecasting and

TABLE 1. Dates (mm/dd) for simulation cases for normal and leap years.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Normal years 1/1–1/18 2/12–3/1 3/26–4/12 5/7–5/24 6/18–7/5 7/30–8/16 9/10–9/27 10/22–11/08 12/3–12/20

Leap years 1/1–1/18 2/11–2/28 3/25–4/11 5/6–5/23 6/17–7/04 7/29–8/15 9/9–9/26 10/21–11/7 12/2–12/19
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atmospheric research needs. The development of WRF

has been a collaborative work among several research

institutes. The Advanced Research WRF core (ARW)

version 2.2 (Skamarock et al. 2007; Michalakes et al.

2001) was adopted in this study. The fluid in WRF ARW

is treated as fully compressible and nonhydrostatic.

WRF uses terrain-following vertical coordinates and the

variables are horizontally staggered on an Arakawa C

grid. The governing equations are written in flux form

so that mass and dry entropy are conserved. The third-

order Runge–Kutta scheme with time-splitting tech-

nique is used for temporal integration, and the third- and

fifth-order advection schemes were chosen for the ver-

tical and horizontal directions, respectively. Both ide-

alized case and real case simulations are available in the

WRF model.

WRF Preprocessing System (WPS), which reads in

the global data and interpolates data to WRF grid

points, could not process PCM data directly. Therefore,

an interface program was developed to bridge PCM and

WPS. The 3D variables, such as wind and temperature,

were interpolated to 21 fixed pressure levels; the lowest

level of these 3D variables and surface level properties

were vertically interpolated to produce T2, 2-m hu-

midity, and 10-m wind. For snow- and soil-related vari-

ables, PCM only provided daily data, which were used to

derive 6-hourly data, under some assumptions, for WRF

simulations.

d. WRF basic configuration

Three domains with two-way nesting were configured

for the WRF simulations. The resolutions for domains

1–3 were 36, 12, and 4 km (Fig. 1b), respectively. The

vertical direction had 31 stretched sigma levels with

seven layers in the first kilometer and the model top

extending to 50 hPa. The time step for domain 1 was

180 s. The finest resolution (4 km) domain (i.e., domain

3), which encompassed all of CA, provides the model’s

capability to capture mesoscale features under complex

topography and intricate flow patterns in this area. To

choose the most suitable physics parameters for this

study, simulations for year 2000 with six different suites

of physics schemes were examined and compared with

observations, which will be described in the next section.

To avoid the drifting of larger-scale features after long-

term integration, four-dimensional data assimilation

(FDDA) was applied to domain 1 using the driving

global data (PCM or GFS) during the 17 days’ in-

tegration. SST was updated every two days for domain 1.

All analyses in this study used the simulation results

from the innermost domain (i.e., the 4-km resolution

one).

3. Tests of different physics schemes in WRF

a. Numerical experiments design

Different physics schemes perform differently in WRF

depending on the meteorological conditions and envi-

ronment. In this section, six suites of physics schemes

(Table 2), in combination with various planetary bound-

ary layer (PBL) parameterizations, cumulus parame-

terizations, and microphysics, were tested for the whole

year 2000 driven by GFS data. The temperature and

moisture flux profiles in the boundary layer are primarily

determined by the PBL parameterization, thus this phys-

ics component is crucial for the conditions within the

boundary layer, where air pollution problems occur.

Precipitation, which is mainly handled by the cumulus

parameterization and microphysics, is another main fac-

tor affecting regional air quality as rainfall can scavenge

airborne pollutants and modify low-level meteorology

conditions through changes in soil moisture. GFS re-

analysis data, rather than PCM data, were used for these

simulations because GFS data are of higher quality

owing to the assimilation of observations (Saha et al.

2006). As a result, the best model configuration selected

from the simulations driven by GFS data is more reliable

and more likely to reflect the actual WRF performance

for our focus regions. The physics parameterizations

evaluated were the following: for PBL, the Yonsei Uni-

versity (YSU) scheme (Hong et al. 2006) and the Mellor–

Yamada–Janjic turbulent kinetic energy (TKE) scheme

(MYJ) (Janjic 2002; Mellor and Yamada 1982); for cu-

mulus parameterization, the Kain–Fritsch (KF) scheme

(Kain 2004) and the Grell–Devenyi scheme (Grell and

Devenyi 2002); and, for microphysics parameterization,

the Thompson scheme (Thompson et al. 2004) and the

WRF single moment 6-class (WSM6) parameterization

(Hong et al. 2004). No cumulus parameterization was

used for the third domain because of its fine resolution.

All simulations used Rapid Radiation Transfer Model

(RRTM) longwave (Mlawer et al. 1997) and Dudhia

shortwave radiation (Dudhia 1989). The surface mois-

ture fluxes are functions of the vegetation type and sur-

face soil moisture in the thermal diffusion scheme. In

CA, irrigation is a major source of soil moisture in spring

and summertime. In WRF, the irrigation effect is im-

plicitly included in the vegetation type (i.e., greenness)

but not in the soil moisture (i.e., dry bias), which only

TABLE 2. Six suites of physics schemes tested for WRF simulations.

Suite 1 Suite 2 Suite 3 Suite 4 Suite 5 Suite 6

PBL YSU YSU MYJ MYJ YSU MYJ

Cumu. KF Grell KF Grell Grell Grell

Micro. Thomp. Thomp. Thomp. Thomp. WSM6 WSM6
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takes rainfall into account because of a lack of infor-

mation on irrigation practices. However, the thermal

diffusion scheme calculates moisture fluxes from vege-

tation greenness as estimated from satellite data with

seasonal variation. Therefore, the greenness due to ir-

rigation is implicitly included. Consequently, a 5-layer

thermal diffusion scheme instead of a more sophisti-

cated land surface model was used in the simulations

to avoid underestimating moisture fluxes because of

the dry-soil moisture bias (R. Fovell 2009, personal

communication, from UCLA). Other model configura-

tions were described in section 2. In the WRF simula-

tions, each month was split into two runs. The first run

included the first 15 days of the month, and the second

run included the rest of the month. These simulations

did not add an extra 3 days for model spinup to the in-

tegration period.

b. Results analysis

To evaluate WRF performance with the six physics

suites, the simulation results from the third domain were

compared with hourly observations collected from sta-

tions operated by the California Air Resource Board

(CARB). During 2000, the year of the simulations, there

were approximately 40 stations measuring surface tem-

perature and humidity and 10 collecting surface wind

data. Figure 2 shows the statewide-averaged seasonal

root-mean-square error (RMSE) of WRF simulated re-

sults [10-m x-component wind (U10), 10-m y-component

wind (V10), T2, and 2-m relative humidity (RH2)]

calculated relative to observational data. In general, the

wind error is larger in summertime than in wintertime,

while the thermodynamic fields (e.g., temperature and

moisture) show the opposite trend. Model performance

with the different physics schemes was also evaluated

with PBLH that was derived using the dry adiabatic lapse

rate from Radio Acoustic Sounding System (RASS) ob-

servations available from 18 stations in CA during sum-

mer 2000 (Table 3). The model performed better for

surface wind, relative humidity, and PBLH with the YSU

PBL scheme (suites 1, 2, and 5). Suite 5 was best able to

reproduce surface temperature in the winter but not the

other three seasons.

Surface meteorology from the model simulations was

further evaluated using the ‘‘persistent score’’ method:

for each observed variable (e.g., T2), the suite with the

best performance at each station for each time point

was identified and given one point, while all other suites

were given zero. The final score each suite received for

each variable was divided by the total number of com-

parisons (i.e., the total number of records for each vari-

able), giving the percent in which each suite was optimal

for each variable (Fig. 3). This will help confirm the

FIG. 2. Seasonal RMSE of model simulated (a) U10 and (b) V10, and (c) T2, and (d) RH2 with the six suites of

physics schemes compared to observation data averaged over all stations in CA. The six suites defined in Table 2 are

listed in order in the plots.

TABLE 3. RMSE and bias of PBLH (m) from WRF simulations

with six different suites of physics schemes during summer 2000.

Suite 1 Suite 2 Suite 3 Suite 4 Suite 5 Suite 6

RMSE 445 449 830 828 444 830

BIAS 282 279 439 435 284 437
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relative performance (station-wise and time-wise) of the

six suites. WRF configured with the physics schemes of

suite 5 performed systematically better for relative hu-

midity and surface wind, which are important variables

for air pollution studies; however, it did not provide

superior T2 results when evaluated by either method.

Analyses from both of the methods suggest that suite

5 is the best physics combination for CA. Simulated

upper-air data, such as 500-mb winds and height, 850-mb

temperature, and water vapor mixing ratio, were also

compared to GFS reanalysis data using both comparison

methods (plots not shown), and the same conclusion was

obtained. Therefore, the physics schemes in suite 5 were

applied for the main simulations in this study.

4. Downscaling results analysis

a. Downscaling results driven by PCM versus
GFS data

After a 10-yr spinup time and 50-yr adjustment period,

the fully coupled PCM integrated for about 100 years

to establish the B06.44 BAU scenario data, which was

used to drive WRF simulations in this study. There were

no adjustments to match observations during the 100 years’

PCM simulation. Therefore, there can be remarkable

differences between PCM results and the National Center

for Environmental Prediction (NCEP)’s GFS reanalysis

data, as well as between the downscaling results driven

by these two global datasets. GFS data were treated as

unbiased to evaluate the PCM data and downscaling re-

sults, and the systematic errors (i.e., biases) of the WRF

model were assumed to be consistent between both

downscaling runs.

The dynamical downscaling procedure was described

in section 2. Downscaled results driven by PCM data

(called PCM WRF runs) were assessed with compari-

sons to the simulations with GFS data (called GFS WRF

runs). Temperature is directly related to the greenhouse

gas forcing scenario in the driving PCM simulations, and

it is also an important factor for summertime ozone

formation. Wind and PBLH determine the ventilation

rate. Thus, the PCM WRF validation focused on these

three variables. T2, wsp10, and PBLH of the downscal-

ing results were averaged over 7 years (2000–06) for

summer (simulation cases 5 and 6; see Table 1) and winter

(simulation cases 1, 2, and 9). The analyses focused on

these two seasons, which are when most ozone and PM

problems occur in CA. The differences of the seasonal

means of GFS WRF from PCM WRF were calculated

and are shown in Fig. 4.

Figure 4a shows that, in summer, the PCM WRF down-

scaling results overestimated surface temperature over

the Pacific Ocean, the coastal region (especially southern

CA), and most of the San Francisco Bay Area but un-

derestimated it inland. The magnitude of the under pre-

diction is slightly smaller in the Central Valley than in

other areas of CA. Land–sea temperature contrast is the

most important factor in the formation of land–sea breeze,

which is an evident phenomenon along the coastline and

plays a large role in California’s weather and air quality,

especially during summer. Thus the comparison of

PCM WRF and GFS WRF yielded disparate results

over the coast region of CA and the adjacent ocean

(Fig. 4a) suggests that these two sets of simulations

predict dissimilar land–sea breezes. More details of land–

sea breeze in CA and its future changes will be explored

in Part II of the study (Zhao et al. 2011). During winter,

PCM WRF simulations underestimated T2 for almost the

entire analysis domain, except for over the Pacific Ocean

adjacent to Southern CA and Mexico. The negative bias

increased with distance inland and was as great as 248 to

258 in some regions.

There was a clear overestimation of surface wind

speed (i.e., wsp10), by approximately 3 m s21, off the

FIG. 3. Persistent scores: percentage of records for which each suite performed the best with

respect to (left to right) RH2, T2, U10, and V10. The total counts for T2, RH2, and wind

component comparisons are 55 833, 45 837, and 14 883, respectively. The six suites defined in

Table 2 are listed in order in the plots.
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FIG. 4. Spatial distribution of differences between 7-yr-averaged WRF results driven by PCM and GFS data (PCM–WRF 2 GFS–

WRF) for T2 (K) during (a) summer and (b) winter; wsp10 (m s21) during (c) summer and (d) winter; and PBLH (m) during (e) summer

and (f) winter.
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coast of northern CA during summer (Fig. 4c). How-

ever, it must be borne in mind that the wind data in GFS

reanalysis might not be of good quality, particularly over

data sparse areas such as the ocean, owing to observa-

tional error. There were no significant wind speed dif-

ferences in the Central Valley in the summer (Fig. 4c),

but winds were slightly overestimated by PCM WRF in

this region during winter (Fig. 4d). Wind speed was over

predicted in much of SoCAB, particularly during winter.

Note that the general overestimation of wind speed by

PCM WRF is due to differences in the synoptic-scale

pattern associated with the PSH in the original PCM

and GFS global datasets, which is discussed later in this

section. This synoptic wind difference dominates the wind

speed comparisons and is much stronger than the ex-

pected weakening of the land–sea breeze by the weak-

ened temperature gradient (Fig. 4a) over ocean and land

in PCM WRF. Overall, the surface wind speed bias from

PCM WRF simulations was more significant during win-

ter than summer for the inland part of the analysis do-

main, despite the fact that surface wind is generally

weaker in winter than in summer in CA.

The 7-yr-averaged PBLH downscaled in GFS WRF

simulations was around 300–400 m in SJV and even

lower in Los Angeles County (LAC) during summer

(Fig. 5a). The former is due to the high pressure system

and valley wind (see discussion in Section 4c), while the

latter is due to a marine atmospheric boundary layer

inversion (Singal et al. 1986). The wintertime average

PBLH from GFS WRF simulations was about 200 m

over SJV and SoCAB (Fig. 5b). The summertime PBLH

bias (Fig. 4e) from PCM WRF was within 50 m in SJV;

while in coastal (inland) SoCAB, the bias was around

1 (2) 100 m. The wintertime PCM WRF PBLH bias

(Fig. 4f) was over 50 m for LAC and relatively small in

other regions of SoCAB and SJV. Considering the low

PBLH in these regions, the over predictions in LAC

and SJV during both summer and winter were sub-

stantial, particularly in LAC.

Based on the above results, there were notable dif-

ferences between PCM WRF and GFS WRF in re-

producing meteorological fields closely related to air

quality, which vary between regions and seasons. This

may translate into differences in modeled seasonal av-

erage air pollutant concentrations, so it is essential to

assess the impact of using atmospheric conditions from

PCM WRF in air pollution studies. To do so, we con-

sider the integrated effect of differences in these mete-

orological fields on air quality, again, assuming that the

real atmospheric conditions are well reproduced by GFS

WRF. Table 4 summarizes the integrated assessment

in three regions of interest [i.e., SJV, coastal region of

LAC (CLAC), and SoCAB other than CLAC (SoCABo)]

during summer and winter. T2 is only considered in

summertime when ozone is the primary pollutant in CA.

FIG. 5. The 7-yr-averaged PBLH from GFS WRF simulations during (a) summer and (b) winter. Units are in m.

TABLE 4. Integrated assessment of PCM WRF performance

compared to GFS WRF for WSP10, PBLH, and T2 and inferred

effects on estimated air pollutant concentration (AQ) in SJV, coastal

region of LAC (CLAC), and SoCAB other than CLAC (SoCABo)

during summer and winter. The letter O indicates an overprediction,

U an underprediction, and the minus sign (2) an unclear effect.

Summer Winter

Region WSP10 PBLH T2 AQ WSP10 PBLH AQ

SJV 2 O U U O O U

CLAC O O 2 U O O U

SoCABo O U U 2 O O U
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Note that these meteorological fields affect air pollutant

concentration simultaneously and nonlinearly. It is very

likely that the wintertime air pollution problem in all

three regions will be underestimated with atmospheric

conditions from PCM WRF. The net effect on estimated

summertime air quality is difficult to appraise owing to

the addition of T2. Summertime pollutant concentration

in SJV may be under predicted owing to overestimates

of PBLH and underestimates of T2 from PCM WRF.

It is relatively difficult to infer the effect of PCM WRM

biases in SoCABo, but air pollution problems are likely

to be underestimated in these regions, particularly in

LAC. The influences of PCM WRF on estimating ex-

treme air pollution events, which normally happen dur-

ing atmospheric stagnation, are discussed in Part II of

this study (Zhao et al. 2011). There we show that in SJV

both the total number of stagnant days and the strength

of the stagnation were underestimated by PCM WRF

during summer and winter; therefore, extreme air pol-

lution events are also likely to be under predicted with

fields from PCM WRF.

To investigate the sources of the differences between

the two sets of simulations, the climatology from the

original PCM and GFS data for a much larger region

were analyzed. GFS data were averaged to the horizontal

resolution of the PCM data to facilitate the comparison.

In the summertime, the PSH in PCM (Fig. 6a) data was

stronger and farther north. Consequently, PCM also had

a stronger pressure gradient, which may partially ex-

plain the higher wsp10 present off the coast of northern

CA in the PCM WRF results (Fig. 4c). The more

northerly location of the PSH in PCM, in combination

with the coast mountain range in Canada, blocked cold

air in Canada from moving south (Fig. 6a). In contrast,

in GFS more cold air intruded to the south and domi-

nated larger areas of inland CA and the adjacent Pacific

Ocean (Fig. 6b). This explains the positive T2 differ-

ence between the downscaling results driven by PCM

and GFS data over the Pacific Ocean during summer

(Fig. 4a). In contrast, the under prediction of inland T2

by PCM WRF (Fig. 4a) was not present in the original

PCM data (Fig. 6e), thus it was generated by the down-

scaling process. Another feature shown in Fig. 6 is that

the North American Thermal Low (NATL) was well

developed in PCM data during summer but not in GFS

(Fig. 6a versus 6b). Figure 7 shows the averaged 500-mb

geopotential height from PCM and GFS data in sum-

mer. There was a trough located above the west coast

in both models. However, the pressure gradient up-

stream of the trough was stronger in PCM data. This

may be what caused the PSH in PCM to be stronger and

farther north (i.e., a stronger wind for a stronger negative

vorticity advection). Note that the wind vectors around

the PSH in Fig. 6 do not represent the real wind field.

The movement of the PSH causes substantial changes

in the wind field in parts of the domain, and therefore

both the wind speed and wind direction are cancelled

out considerably in the calculation of seasonal averages.

PCM data and downscaling results (Figs. 4a and 6e)

have obvious similarities over the Pacific Ocean adja-

cent to CA, with biases in T2 of up to 48–58 in both. PCM

data had a small warm bias (approximately 18–28) for

inland CA, while the downscaling results had small cold

bias (approximately 218). Possible reasons are that 1)

the complex topography in CA might introduce extra

error when interpolating coarse global data close to the

surface for input to fine resolution WRF simulations;

and 2) the summer means were averaged over cases 5

(18 June–5 July) and 6 (30 July–16 August) for the

downscaling results, but over the whole 3 months (June,

July, and August) for PCM data, so some discrepancy

between the two is expected.

Compared to summertime, the wintertime climatol-

ogy patterns from PCM (Fig. 6c) and GFS (Fig. 6d) data

were more similar. This might be due to stronger signals

in wintertime (e.g., the baroclinic zone). However, it is

noted that the high pressure system over the western

United States was well formed and elongated to the

northwest–southeast from PCM. This helped transport

cold air more efficiently southward from southern Canada

and the northern United States. As a result, strong cold

T2 anomalies between PCM data and GFS occurred in

Texas and Arizona (Fig. 6f), and this was carried over to

southeastern CA through downscaling (Fig. 4b).

Overall, the strength and position of the PSH, which

determines the amount and pattern of cold air in Canada

intruding south, played an important role in the differ-

ence between PCM and GFS data in summer. Thermal

lows (highs) in summer (winter) over the western United

States also contributed to the difference between these

two global models, to some extent. PCM bias corrections

will be needed to improve the downscaling results.

b. Surface comparison between simulation results
and observational data

To evaluate the model performance, the simulation

results were compared with aviation routine weather

report (METAR) surface weather observational data,

which were available every hour at 66 stations in SoCAB

and 12 stations in SJV during the 2000–06 period. In

METAR data, surface wind speed (i.e., wsp10) and tem-

perature (i.e., T2) are recorded for the two minutes prior

to observation time and averaged. By comparing to ob-

servational data, simulation errors internal to the WRF

model can be explored for these specific areas and model

configuration. Unsurprisingly, the simulations driven
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FIG. 6. Spatial distribution of 7-yr-averaged T2 (shading, K), sea level pressure (contour lines, mb), and wind

vectors of (a) PCM data for summer, (b) GFS data for summer, (c) PCM data for winter, (d) GFS data for winter; and

T2 difference between PCM data and GFS data (PCM 2 GFS) for (e) summer and (f) winter.
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by GFS data generally matched the observations better

than their counterparts with PCM data. Figure 8 shows

the T2 bias of the simulations driven by GFS (dark gray)

and PCM (light gray) data averaged over time (the

7 years simulated) and space (the METAR stations) in

SoCAB (Fig. 8a) and SJV (Fig. 8b). Simulations with

GFS data overestimated T2 for both SoCAB and SJV.

GFS WRF performed better during summer than win-

ter, and the wintertime simulation was better in SoCAB

than SJV. Poorer performance may be associated with

a temperature inversion, which happens during winter

and is stronger in SJV than SoCAB. WRF is known to

have difficulty reproducing conditions within the shal-

low boundary layer associated with these temperature

inversions. PCM WRF overestimated T2 largely dur-

ing fall (cases 7 and 8). The bias comparisons between

simulations with the two global datasets are consistent

with Figs. 4a and 4b, which show that the simulations

with PCM data predicted lower T2 over land during

summer and winter. The general ;(22 to 12 K) bias of

T2 from GFS WRF simulations suggests that WRF per-

formance is acceptable considering the complex to-

pography and mesoscale flow patterns in CA. The

downscaling results with PCM data had an exceptionally

warm bias for case 7, which spans 9–26 September, in

both regions. Figure 9 compares T2 from PCM and GFS

during this time. The overall systems were in accord with

those during summer (Figs. 6a and 6b), but the PSH

weakened in both of the global datasets during fall. The

PSH in GFS data helped to bring the cold air in Canada

to the western United States. In contrast, the PSH in

PCM data was elongated to the northeast relative to its

position in the summer (Fig. 6a), constraining the cold

air to latitudes above 458N. Consequently, the surface

temperatures were quite different between the two global

datasets as well as their downscaled simulation results

in CA for this case (i.e., case 7).

Figure 10 shows the wsp10 bias of each simulation

case averaged over the 7-yr study period relative to

METAR observations. Both simulations overestimated

wsp10 for most cases. Much greater overestimation oc-

curred in the simulation with PCM data in SoCAB

during winter (cases 1, 8, and 9), as was also apparent in

comparisons of PCM WRF with GFS WRF (Fig. 4d).

FIG. 7. The 7-yr-averaged 500-mb geopotential height of (a) PCM and (b) GFS data during summer. Units are in m.

FIG. 8. The 7-yr-averaged T2 bias (K) over (a) SoCAB and (b) SJV

for each simulation case driven by GFS and PCM data.
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The smaller magnitude of bias in SJV could be due to

SJV having weaker wind overall than SoCAB. In terms

of bias, WRF generally simulated wsp10 better in sum-

mer than winter, though both seasons are known to have

relatively calm wind owing to the influence of the PSH

moving inland. However, in addition to bias, discrep-

ancies between model results and observations may

have arisen because sparsely distributed surface obser-

vations were compared to a uniformly spaced, 4-km

model grid, as well as from the inherent uncertainty of

wind observations in general. Note that the seasonal

trends of model performance in simulating wsp10 are

the opposite in terms of RMSE (Fig. 2) and bias (Fig. 10).

The larger RMSE but smaller bias in the summer can

occur if model simulations have a larger uncertainty but

the errors have opposite signs and thus cancel each other

out. Another explanation is that only year 2000 was

simulated to test the six physics suites (Fig. 2), while the

simulation period for the results described in this section

(Fig. 10) was 2000 ; 2006.

Wind direction was not validated in this study, how-

ever, using PCM WRF results, Mahmud et al. (2010)

show that the UCD–CIT air quality model successfully

predicted the spatial pattern of PM2.5 concentrations in

CA, which suggests that the wind directions from WRF

simulations are generally reasonable. However, the an-

nual average concentrations of PM2.5 were underpre-

dicted by the UCD–CIT air quality model by ;(35–40)%

(Mahmud et al. 2010). Generally speaking, high PM2.5

episodes in SJV and SoCAB occur during stagnant

events, when winds are very weak. Previous studies have

shown that WRF has difficulties in capturing the strength

of stagnant events and the accompanying weak surface

wind (Mölders and Kramm 2009; Zhang et al. 2009).

A possible reason is that the vertical resolution may not

be high enough to accurately resolve the wind within the

low boundary layer during the stagnation events. To ex-

plore the possibility of this problem in our simulations,

the model bias and RMSE were calculated with respect

to the observed surface wind speeds. The observed wind

speed has discrete values owing to the 0.5 m s21 preci-

sion of METAR observational data. Similar results were

found in both SoCAB and SJV, thus only the results for

SoCAB are shown (Fig. 11). Over 80% of the observed

wsp10 were under 5 m s21, which is why the range of

FIG. 9. As in Fig. 6, but for case 7.

FIG. 10. As in Fig. 8, but for wsp10.
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the errors shown in Fig. 10a are quite different from

those in Fig. 11a. It is obvious that for very calm wind

(#1.5 m s21), WRF simulations with both datasets had

a relatively large bias and high RMSE. Taking into ac-

count the small values of the corresponding wind speed

observations, these biases and RMSEs are even more

substantial. PCM WRF results also had relatively large

bias (underestimated) and high RMSE for high winds.

The difficulty of simulating weak surface wind may be

a nonnegligible problem when applying the WRF model

to provide meteorological inputs for air quality simula-

tions, and it must be improved to capture air pollution

episodes. Potential solutions, such as increasing the ver-

tical resolution within the boundary layer or increasing

the surface roughness, have been suggested and tested

within the WRF community.

The analyses in this section showed that, in GFS WRF

runs, T2 was overestimated and wsp10 was, in general,

substantially overestimated in calm wind conditions and

underestimated in high wind conditions. WRF perfor-

mance was better during summer than other seasons.

These patterns very likely represent the WRF systemic

error (i.e., bias) in this region.

c. Low PBLH during summer

As PBLH is one of the most important meteorological

inputs to air quality model simulations, additional in-

vestigations were carried out on this variable. As men-

tioned in section 4a, the 7-yr-averaged summer PBLH

was about 300–400 m in the Central Valley. Yet, at the

same latitude in Nevada, the PBLH was over 1000 m

(Fig. 5a) despite the fact that T2 is higher in the Central

Valley than Nevada (by over 3 K; figure not shown). In

general, the high surface temperature (i.e., T2) overland

during summer could promote vertical convection,

which results in high summer PBLH. The possible rea-

sons for the low summer PBLH in the Central Valley are

explored in this section.

Figure 12 shows the 3-yr-averaged (2004–06) daily

maximum PBLH from observational data, PCM WRF,

and GFS WRF simulations at stations Visalia Air-

port (VIS) (36.308N, 2119.408W) and SMAQMD_WP1

(SAC) (38.208N, 2121.308W); the locations of both

stations are shown in Fig. 1b. Only three-years of data

are analyzed owing to the availability of the observa-

tions. The pblh_OBS shown in Fig. 12 are the 7-day-

averaged daily maximum PBLH calculated from RASS

observations. Averages were calculated to smooth small

variations in the original observational data and better

perceive the seasonal pattern. Summertime PBLH was

also shallow in pblh_OBS (Fig. 12). Modeled PBLH were

quite consistent from both global datasets, and they were

in good agreement with observations. Overestimation

occurred over both stations during springtime. GFS WRF

generally predicted lower PBLH than PCM WRF did for

most of the year. Overall, Fig. 12 shows that both PCM

and GFS WRF simulations well captured the seasonal

trend of the PBLH over the two stations in the Central

FIG. 11. The 7-yr-averaged model (a) bias and (b) RMSE with

respect to observed wind speed in SoCAB.

FIG. 12. The 3-yr-averaged (2004–06) daily maximum PBLH

from observations (light gray solid line), PCM WRF simulations

(dark gray dashed line), and GFS WRF simulations (dark gray

solid line) at stations (a) VIS and (b) SAC.
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Valley, and the shallow summer PBLH was present in

the observations.

Analyses of stagnant events over SJV, the details of

which are provided in Part II (Zhao et al. 2011) of this

study, revealed that the PSH moved inland and domi-

nated SJV for the majority of case 6 (30 July–16 August)

during 2004–06 but only appeared for six days during

2000. The high pressure system over SJV always results

in stagnant events featuring calm surface wind, low

PBLH, etc. PBLH (from PCM WRF simulations) av-

eraged over SJV from 2004–06 are compared to those

from 2000 in Fig. 13. It is obvious that without the

dominance of a high pressure system, the PBLH for case

6 (circled in Fig. 13) in 2000 was much higher. Therefore,

the high pressure system is one cause of the low sum-

mertime PBLH in SJV.

Yet, even without a persistent high pressure system

in 2000, the PBLH during summer was still only about

half of that in springtime. This low PBLH is also caused

by seasonal changes in the flow patterns in SJV. The

boundary layer structure in a valley can be very com-

plicated and vary temporally owing to cross-valley flow.

SJV is a relatively wide valley, with an average valley

floor width of 125 km and a depth of about 1 km on

the west and over 3 km on the east side; consequently,

the flow pattern and the PBL structure in SJV can be

very different from the conceptual model of the con-

vective boundary layer in deep valleys (Whiteman 1982;

De Wekker et al. 2005; Kuwagata and Kimura 1997).

Figure 14 shows the vertical cross sections of vertical

wind velocity and potential temperature along an east–

west gradient containing VIS (see Fig. 1b) at 1600 local

time (LT) on 7 August 2000 and 28 March 2000. These

dates were chosen to represent the flow patterns that

normally appear in the afternoon during summer and

spring in SJV, when the high pressure system is absent.

The time of 1600 LT was selected as the WRF outputs

were only saved four times a day (0400, 1000, 1600, and

2200 Pacific daylight time); among these times, PBLH is

highest at 1600 LT, when the sun is facing the west side of

the mountains. In summer, the valley wind was strong

FIG. 13. The SJV-averaged daily maximum PBLH, averaged

over 2004–06 (gray solid line) and during 2000 (black dashed line).

The encircled part is from case 6.

FIG. 14. Vertical cross sections of positive w (black solid lines), negative w (black-dashed lines), and potential temperature (gray solid

lines) at 1600 LT on (a) 7 Aug 2000 and (b) 28 Mar 2000 along an east–west transect (shown in Fig. 1b) containing VIS (shown as black dot

on x axis). The interval of the potential temperature and negative wind velocity in the plots is 1 K and 0.03 m s21, respectively. A contour

interval multiplier of 3 (i.e., 1, 3, 9 cm s21, etc.) was applied to the positive wind velocity due to the strong upward motion in the mountain

region.
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owing to strong differential heating (Fig. 14a). The as-

sociated downward flow, which appeared most places

between the two mountain ranges, suppressed vertical

convection near the surface and led to a very shallow

PBLH over the Central Valley. In contrast, during

spring, the valley wind signal weakened, and upward

motion was much stronger and present at more places

between the two mountain ranges than during summer.

Note that VIS (the dot in Fig. 14) is located almost inside

an upward motion area in springtime (Fig. 14b), and the

PBLH might be higher there than other places in the

valley for this particular case (i.e., case 3 in 2000).

Nevertheless, the averaged PBLH in the Central Valley

in the summertime was much shallower than that in the

springtime, as indicated in the potential temperature

field in Fig. 14.

The SJV averaged 3-km vertical wind velocity at

1600 LT was calculated from PCM WRF simulations for

year 2000. Figure 15 shows the time evolution of the

regional averages during case 6 (summer) and case 3

(spring). The negative values (w , 0) during case 3 oc-

curred at the time of high pressure system dominance

in the Central Valley. Upward motion (w . 0) was ob-

vious for other simulation times because of solar heating

over the Central Valley during spring. Weak subsidence

occurred in the Central Valley for most of case 6 because

of the dominance of the valley wind. Figure 15 indicates

the overall summertime (springtime) downward or near

zero (upward) motion above the boundary layer, which

was below 3 km for all cases simulated during 2000 (Fig. 13)

over SJV. Therefore, during the summer, the vertical con-

vection within the boundary layer was suppressed by the

valley wind above and resulted in low PBLH.

5. Conclusions and remarks

This study investigates the impacts of climate change

on meteorology and air quality conditions in CA using

the WRF model to dynamically downscale PCM data to

high-resolution (4 km) simulations. As the first stage of

the study, this paper focused on the downscaling results

for the present climatology (2000–06) with two different

datasets: PCM and GFS data. Comparing these two sets

of simulations can determine the error due to PCM bias

in the downscaling results. In addition, the WRF simu-

lation results were evaluated against observational data.

The spatial distributions of PBLH, T2, and wsp10

during summer and winter were analyzed for the two

simulations. When driven by PCM data, T2 was under-

estimated for most of the analysis domain during win-

ter, while the underestimation mainly occurred inland

during summer. Similar patterns were observed when

comparing temperature from the original PCM and GFS

data, which indicates that the downscaling biases are

inherited from the driving PCM. However, for inland

CA the sign of the bias between the original global data

and the downscaling results were the opposite, as a re-

sult of the downscaling process. An imprecise prediction

of the location and strength of the PSH, and conse-

quently the pattern and amount of cold air intruding to

CA from Canada and the northeastern Pacific Ocean are

the main sources of the PCM data bias. PCM WRF

overestimated wsp10 in CA and over the neighboring

Pacific Ocean. With respect to the two regions with se-

rious air pollution problems, the wsp10 overestimation

was more obvious in SoCAB, especially during winter.

PBLH was also overestimated for most regions in CA.

T2, wsp10, and PBLH are the three most important

meteorological factors affecting regional air quality. The

bias of the downscaling results driven by PCM data

imply that using these results as inputs for air quality

models will probably underestimate the seasonal (i.e.,

summer and winter) pollutant concentration in CA, par-

ticularly in LAC.

The downscaling results were compared to surface

observational data as well. The model bias of T2 and

wsp10 were averaged over SJV and SoCAB for each

simulation case. In general, WRF-simulated T2 matched

the observations quite well, with a positive bias of less

than 2 K. The temperature simulation was better during

summer than winter, in terms of bias, and better for

SoCAB than SJV. These statistics averaged over the two

geographic regions were consistent with the spatial dis-

tribution analysis of the two sets of simulations. WRF

overestimated wsp10 in these two regions. The eval-

uation of model bias–RMSE versus observed wsp10

showed that WRF has difficulty reproducing weak sur-

face wind in these regions. It is crucial to solve this

problem to have accurate air quality predictions using

WRF simulation results as the meteorological inputs.

Driven by the present 7-yr (2000–06) PCM WRF re-

sults, an air quality model successfully predicted the

FIG. 15. The SJV-averaged 3-km vertical velocity at 1600 during

simulation case 6 (summer) and case 3 (spring).
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spatial distribution of PM2.5 concentration in CA; nev-

ertheless, the annual average PM2.5 concentration were

underestimated by about 35%–40% at different loca-

tions in SJV and SoCAB (Mahmud et al. 2010).

The spatial distribution of simulated PBLH reveals

that the summertime PBLH is much lower in SJV

compared to other inland regions at the same latitude.

Two possible reasons are the dominance of a high pres-

sure system and the strong valley wind in the daytime

during summer over SJV; both of which provide down-

ward motion above the boundary layer and suppress

vertical mixing in this region.

This paper illustrates that the downscaling results in-

herit the biases of the driving GCMs through the lateral

boundary conditions, which agrees with previous stud-

ies. To improve the performance of WRF downscaling,

an ensemble of GCMs (CCSM3 and HadCM3, for in-

stance) or PCM bias corrections will be required, which

we leave for future work.

RCMs are widely used to dynamically downscale

coarse-resolution GCM simulation results to higher res-

olution but there are several potential problems associ-

ated with this approach. Inconsistencies between GCMs

and RCMs, such as different soil/vegetation informa-

tion, numerical methods, physics parameterizations, etc.,

might produce a mathematically and physically ill-posed

problem. In addition, meteorological variables within

the boundary layer can be sensitive to the vertical and

horizontal resolutions employed during the downscaling

exercises. Finally, wind fields simulated over California,

in particular the coastal region, are very sensitive to the

strength and location of the PSH system, which can be

influenced by the total domain size employed by the

RCM. In this study, differences in synoptic-scale pat-

terns were observed between WRF predictions and the

driving global data. These differences could reflect real

phenomena that are caused by interactions between the

large-scale and small-scale systems, or these differences

could be artifacts caused by inconsistencies between

WRF and the original GCM. Further study is needed to

fully identify best practices that avoid potential artifacts.
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