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ABSTRACT

Identifying pollutant sources that contribute to downstream locations is important for policy making and

air-quality control. In this study, a computationally economic signal technique was implemented into a three-

dimensional nonhydrostatic atmospheric model to help to identify source–receptor relationships. An ideal-

ized supercell case and a semireal air-pollution case in Turkey were used to investigate the potential of the

technique. For each pollutant, signals with various frequencies were emitted from different source locations

and added into that particular type of emitted pollutants. The time series of pollutant concentration collected

at receptors were then projected onto frequency space using the Fourier transform and short-time Fourier

transform methods to identify the source locations. During the model integration, a particular tracer was also

emitted from each pollutant source location (i.e., a conventional method to study the source–receptor re-

lationship) to validate and evaluate the signal technique. Results show that frequencies could be slightly

shifted after signals were transported for some distance and that evident secondary frequencies (i.e., beat

frequencies) could be generated as a result of nonlinear effects. Although these could potentially confuse the

identification of signals released from source points, signals were still distinguishable in this study. Results

from a sensitivity test of the diffusion effect on different frequencies suggest that the effect of diffusion on

amplitude damping is stronger for higher frequencies than for lower frequencies.

1. Introduction

The increase of population and industrial and com-

mercial activities has exacerbated air-pollution prob-

lems. Of greatest concern to the public are the adverse

health effects of most pollutants (Dockery and Pope

1994; Brunekreef and Holgate 2002). Airborne pollut-

ants, especially fine particulate matter (PM) with aero-

dynamic diameter smaller than 2.5 mm (PM2.5), have

significant health impacts since they can be deeply in-

haled with potentially toxic effects on the heart and

lungs (Pope et al. 1995; Seaton et al. 1995); PM can also

adversely affect visual range and ecosystems (EPA 1996).

Air pollutants and their precursors can be transported

over great distances before being deposited at down-

stream receptors (Jaffe et al. 1999; Berntsen et al. 1999).

Potential emission-control strategies often rely on de-

termining proper source–receptor relationships using

air-quality models. For source-oriented Eulerian air-

quality models (Peters et al. 1995; Kleeman et al. 1999),

tracers, representing the pollutants, are emitted from

the source points and propagate with the wind. Their

paths are tracked by calculating the tracer concentra-

tions in each grid cell of the model. An Eulerian model

can be closely coupled with a meteorological model,

whose outputs drive the tracers’ transport, with both

models having the same domain and grid spacing.

The tracer’s transport and diffusion computations can

be conducted within the meteorological model, known

as an online approach (Grell et al. 2005; Chen et al.

2008a), or offline (Fox 1981; Held et al. 2005), whereby

the meteorological output is saved at a suitable interval

for later ingest into the transport model. The two ap-

proaches are identical when the meteorological model’s

output is stored at each time step (typically on the order

of minutes) for use in the offline model. However, this is

impractical, and wind output is typically saved on the

order of hours. Temporal interpolation between avail-

able output times is one of the primary errors in air-

pollution calculations (Stohl et al. 1995; Seaman 2000).

Additional errors can arise from spatial interpolation
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and inconsistent physics parameterization schemes be-

tween the two models (Stohl 1998). By implementing

the tracer conservation equation into the meteorological

model, the online approach can avoid the aforemen-

tioned errors. In addition, this method can take into

account the effects of subgrid-scale convective mixing

and subgrid-scale turbulent mixing, consistent with

meteorological scalars (Chen et al. 2008a). However,

each pollutant species from each source location is

treated as one variable within the online model, and,

therefore, using different tracers to represent different

species and emission locations to find a unique source–

receptor relationships can be computationally costly in

both time and memory for a large airshed case (Held

et al. 2005). For example, if there are N source points,

with M species emitted from each source location, there

would be M 3 N extra variables added to the model.

Thus, this approach needs tremendous computational

memory and time for a big-airshed case. The im-

plementation of a signal technique (Hsu and Chang

1987) into this online approach can solve this problem to

some degree. The main concept of this signal technique,

as described in Hsu and Chang (1987), is that a unique

oscillatory signal is superimposed onto emission data at

each source point and propagates with the tracers; the

frequency spectrum is obtained by analyzing the time

series of pollutant concentration at the receptors. Be-

cause each source point was tagged with a unique fre-

quency of the oscillatory signal, it is expected that the

source–receptor relationship could potentially be iden-

tified from the spectrum at the receptor. By using dif-

ferent frequencies superimposed on tracers to represent

different emission locations instead of using different

tracers, the number of tracers needed in the model can

be reduced (i.e., reduce computational time and memory).

For the example mentioned before, instead of M 3 N,

only M new variables need to be added to the model. The

objective of this study is to develop the Weather Research

and Forecasting (WRF) tracer model, in which an online

tracer calculation algorithm with signal-processing tech-

niques was implemented, to study the signal technique in

three-dimensional (3D) air-pollution applications. Two

cases studies, an idealized 3D supercell case and a semi-

real air-pollution case, are used to examine and demon-

strate the signal technique. In the semireal case study,

instead of real emission sources (big cities), tracers are

emitted from preselected sources within the limited WRF

domain, because of the great computational demand for

a real case that encompasses big cities (more details in

section 4).

The paper is organized as follows: The method, nu-

merical modeling, and time series analysis tools are

described in section 2. An idealized-case experiment

and analysis are presented in section 3, and a semireal-

case experiment and results are presented in section 4.

Concluding remarks are given in section 5.

2. Description of method and numerical modeling

a. Review of the signal technique

In theory, online tracer simulations can estimate the

source–receptor relationships more accurately than can

offline ones, at the expense of computational memory.

Hsu and Chang (1987) proposed a signal technique to

alleviate the computational burden of the online tracer

method. In their experiments, a unique oscillatory signal

S was superimposed onto emission data (i.e., tracers)

with the form (1) at each source point:
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where U is the wind speed (set to be constant in their

experiment) and n is the Fickian diffusion coefficient.

The analytic solution of Hsu and Chang (1987) at the

receptor x in such a system indicates that 1) the leading

frequency is the emitting frequency vi, 2) both processes

can contribute to a phase shift [vi(x 2 xi)/U due to ad-

vection and p/4 due to diffusion], and 3) the amplitude

modulation factors from advection and diffusion are

2 cos[vi(x 2 xi)/U] and (gvi)
21/2 respectively. Please

refer to Hsu and Chang (1987) for details about deriving

the analytic solutions.

In the numerical experiment, the signal propagation

went through the same advective and diffusive processes

as tracers in the numerical model. At the receptors, the

frequency spectrum was obtained by analyzing the

time series of pollutant concentration using a Fourier

transform (FT). The spikes in the spectrum implied that

signals with those frequencies were received at the

analyzing receptors. Because each source point was

tagged with a unique frequency of oscillatory signal,
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the source–receptor relationships could potentially be

identified from the spectrum at the receptor if there

were no numerical error and if signals were not en-

tirely diffused away. Several experiments were done

for both nonreactive and reactive tracers with linear

and weak nonlinear transformations, and their results

were very promising. The signals could be detected at

the receptors for all of the cases, although obvious

‘‘beat’’ signals were present for the weak nonlinear

cases with mean background concentration. The sensi-

tivities of the results to the diffusion effect and back-

ground concentration were also investigated. Consistent

with the analytic solution, the diffusion effect on the

amplitude response in the experiment is dependent on

both the distance between the source and the receptor

and the oscillation frequency (i.e., the higher the fre-

quency is, the more the signal is diffused out). The gen-

eration of beat signals due to the mean background

concentration could be reduced by choosing a proper

signal strength.

The selection of the signal frequency is important.

Hsu and Chang (1987) pointed out that the damping of

the signal amplitude by the diffusion effect is proportional

to the frequency. Therefore, frequencies that are too high

should be avoided for this approach. It is possible that

a slight shift of frequency and a spread of the frequency

width could occur. The frequency shift is somewhat anal-

ogous to the Doppler shift, resulting from the nonlinear

winds between the signal-emitting points and the re-

ceptors during the transport time. Shifting to higher

frequencies means that the overall wind speed during

the signal transport is higher than that at the source

point when the signals are emitted, and vice versa. The

dent between two contiguous spectrum peaks, which

correspond to two signals, in the frequency space may

become obscure because of frequency spread, and, there-

fore, the interval between two frequencies needs to be

wide enough to reduce the ambiguity when doing spec-

trum analysis. Moreover, to apply this signal approach

to the real atmosphere, one should avoid using the fre-

quencies that already exist in the atmosphere, such as

gravity waves, diurnal waves, and so on, so as to identify

the frequencies from the signals.

The model used in Hsu and Chang (1987) is an ideal-

ized horizontal two-dimensional (2D) Eulerian numeri-

cal model, with a constant flow of 20 m s21. To evaluate

this technique further, more studies using a realistic and

sophisticated atmospheric model are required.

b. The approach

Tracers’ transport is mainly determined by the wind

and the instability of the atmosphere. The performance

of the signal technique in the real atmosphere, which has

a complex wind field, can be very different from that of

the simple, constant-wind 2D model simulation in Hsu

and Chang (1987). Thus, we propose to use a fully com-

pressible 3D nonhydrostatic model with higher-order-

accuracy numerical schemes to investigate the signal

technique. The primary objective of this research is to

investigate whether this signal technique is still capable of

solving the source–receptor relationships for 3D non-

linear idealized cases and for pseudoreal cases within

a complex model. The Advanced Research version of the

Weather Research and Forecasting model (WRF-ARW;

Skamarock et al. 2005), version 2.2, was chosen for this

study, and a WRF tracer model was developed, in which

an online tracer calculation algorithm is implemented

into the model, to study the signal technique and tracer

transport.

To simplify the problem, no emission data but signals

were released from source points, and the background

concentration was set to zero for testing in this study.

However, at each source location one constant tracer

was released for validation of the signal technique. Im-

balances in the model initial fields result in many spu-

rious short waves, mainly gravity waves, during the first

few hours of the WRF simulation. To avoid these spu-

rious short waves, the tracers and signals were released

into the model 12 h after the initial time. The form of the

signals (sig) added to WRF in this study is

sig 5 A sin[2pN(T � PT)/TT], (3)

where A is the amplitude, N is the frequency in cycles

per day (cpd), T is the model integration time in seconds,

PT (543 200 s) is the presimulation time (i.e., 12 h), and

TT is the total (86 400) seconds in 1 day.

After some experiments, the applicable frequency

range for the two case studies is approximately 15–60 cpd.

As described earlier, a big enough frequency interval is

a prerequisite for signal identification at the receptors,

and, therefore, a frequency interval of around 10 cpd is

employed. The amplitude employed for the idealized

case study is 50 units per second. For real cases with a

signal superimposed onto emission data (although no

emission is considered for now), the amplitude of the

signal should be much smaller than the real emission and

thus a much smaller amplitude (0.0018 units per second)

than that used in the idealized case is applied to the

semireal case study. The same amplitude is applied for

the constant tracers in both case studies.

c. The Weather Research and Forecasting
tracer model

A tracer model was developed based on the WRF

model (Skamarock et al. 2005). WRF is a next-generation
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mesoscale meteorological model that has been robustly

tested for both idealized studies and real data simulations/

forecasts (Hong et al. 2004; Miglietta and Rotunno 2005;

Nolan et al. 2007; Chen et al. 2008b, and others). WRF is

a fully compressible, 3D nonhydrostatic model, and its

governing equations are written in flux form to conserve

mass and dry entropy. WRF is well designed and modu-

larized, so that it is relatively easy to develop an online

tracer model within the WRF model framework by add-

ing four-dimensional tracer variables to the model. In this

online tracer model, the transport of tracers is treated as

a modeled scalar, and the effects due to advection and

eddy mixing are taken into account in the tracer calcu-

lation. The only source term for tracers is the emission

from the surface injected into the first half-model level.

To apply the signal technique in this WRF tracer model,

the tracers are replaced with signals because no emissions

are considered in this study.

d. Time series analysis tools

Time series data often contain different time scales

of frequencies. These frequencies are in general difficult

to see from original data directly (Priestley 1981). Many

numerical tools, such as FT or wavelet analysis (WA),

can transform data from a physical space into a frequency

domain. During air-pollution episodes, receptors have

pollutants that are contributed from both local and non-

local emissions. In addition to knowing where the pol-

lutants are coming from, the arrival time from each

source can help to identify the problem more precisely

and is important for emission control. Therefore, both

source locations and arrival times are of interest in our

spectral analysis for this source–receptor study. Unlike

FT, short-time Fourier transform (STFT) and WA can

provide additional, though rough, information about the

timing of those signals. Although wavelet decomposi-

tion could provide decent time and frequency infor-

mation both, a proper STFT can present much higher

frequency resolution (Bentley and McDonnell 1994).

Therefore, in addition to FT, STFT is applied to the

time series analysis in this study.

A conceptual diagram of the STFT is shown in Fig. 1.

The time series to be analyzed (Fig. 1a) is composed of

sinusoidal functions, with the frequency changing from

hour to hour. For hours 1, 2, and 3, the frequencies are

10 cycles per hour (cph), 15 cph, and 20 cph, respectively.

First, time series data are divided into different seg-

ments in sequence. For the given example, we intend to

see the frequency changes; thus, 1-h segments of data are

used. Second, a window function, which is nonzero only

for the data segment of interest, is chosen. Commonly

used windows include rectangular, Hann, or Gaussian,

with the rectangular window function being the choice

in this study (Fig. 1b). Third, the time series data are

multiplied by the window function to produce a new

time series (Fig. 1c). Last, FT is applied to the new time

series to analyze the frequency in that particular time

period (i.e., the information of occurring time). Figure 1d

shows the spectra for the first hour of the example time

series. The procedure is repeated from the first to the

last segment by sliding the window a half segment each

time to avoid losing frequency information between the

time segments. Therefore, a total of five data series would

be analyzed for this example. The length of the window

is important. A shorter (longer) time window results in

better (worse) resolution in time (i.e., a more precise

occurrence time) but worse (better) resolution in fre-

quency (Kaiser 1997). The window length chosen for the

semireal case study was mainly based on the duration of

the highly polluted periods.

3. Idealized-case experiment

a. Model configuration

To explore the applicable frequencies and the ap-

propriate frequency intervals between signals, as well as

to investigate the use of the signal technique within the

WRF framework, an idealized 3D simulation was first

conducted. The WRF idealized supercell case was chosen

for this purpose. A single model domain of 100 3 100 grid

points with 2-km horizontal spacing was configured.

There were 41 stretched layers in the vertical direction,

with a model top of 20 km. The 1.5-order prognostic

turbulence kinetic energy (TKE) subgrid-scale eddy dif-

fusion and Purdue–Lin microphysics (Chen and Sun

2002) were applied. The time step was 10 s, and the

model integrated for 1.5 days.

b. Selection of source and receptor locations

Proper evaluation of the signal techniques requires

that the idealized numerical experiments be designed

carefully. For example, sources must be located where

they are sure to have some impact on the receptors. The

winds fields from a preliminary idealized supercell run

were used to guide the placement of the tracer sources.

It was found that the supercell moved out of the domain

after 3–4 h of integration, leaving behind perturbed

mean winds propagating within the domain. Because

tracer transport is determined mostly by the low-level

wind field and the pathways are generally aligned with

the wind direction, source placement can be guided by

plots of a low-level wind field. A snapshot of the winds

at the lowest model level after 12 h of integration (the

time when tracers and signals were released) is shown in

Fig. 2. Based on this wind field and the fact that the

2200 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 49



source points have to be located upstream of the re-

ceptors, four sources (s1–s4) were selected (Fig. 2).

c. Idealized-case numerical simulation

The idealized WRF case was run again with the four

sources (s1–s4; see Fig. 2) emitting signals and tracers

into the lowest model layer. Each source emitted two

tracers. The first was a constant tracer of 50 units per

second (designated T1–T4, corresponding to sources 1–4,

respectively). The second tracer emitted from each site

was T5. This tracer contained a unique oscillatory sig-

nal for each site [Eq. (3)] with an amplitude of 50 units

per second. From the preliminary run’s wind pattern at

hour 12 (Fig. 2), it can be estimated that s1 was the

source point farthest from the receptors (with s4 be-

ing the closest source). To compensate for the depen-

dence of diffusion on distance and frequency, the signal

FIG. 1. A conceptual model of STFT. (a) The example time series. (b) The rectangular window. (c) The new series

generated by multiplying the time series in (a) by the window function in (b). (d) The spectra for the first segment of

the example time series. Note that the y axis in (d) is spectrum.
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emitted from the farthest (closest) source point should

have the lowest (highest) frequency. Therefore, the fre-

quencies N chosen for the T5 signal were 21, 31, 39, and

47 cpd for sources s1–s4, respectively. The tracer con-

centrations were saved every minute so as to have de-

tailed time series for spectral analysis.

The frequency spectrum of the T5 concentration time

series will be analyzed at the chosen receptors and

compared with the constant tracer concentrations (i.e.,

T1–T4). If the corresponding frequencies of the signals

are distinguishable from the spectrum, it implies that the

signal technique could potentially achieve the goal of

obtaining the source–receptor relationships with better

efficiency than the tracer method.

d. Results

After analyzing the 24-h transport pathways of T1–T4

within the whole domain, r1 (30, 70), r2 (25, 80), and r3

(20, 90), which received significant amounts of tracers,

were chosen as the receptors (Fig. 2). The distances

between the sources and receptors are listed in Table 1.

The 1-day evolution of the concentration of the four

tracers at each receptor is shown in Fig. 3. Note that the

starting point of the x axis in Fig. 3 is the tracer release

time (i.e., 12 h after the model initial time) instead of the

model initial time. Because a signal and a tracer were

released simultaneously from each source, a receptor

that receives a tracer should ideally receive a corre-

sponding T5 signal, assuming that the T5 signal was not

completely damped out or aliased. In this case study,

every receptor received all four tracers during some

period of time (Fig. 3). Thus, the numerical setup here is

good for examining whether the signals are still distin-

guishable at the receptors. Note that the negative tracer

concentrations are an artifact of the advection scheme

used in WRF. However, the spurious waves due to this

problem are much shorter than the real waves because

of the strong winds present in this study. Therefore,

these artifacts will not have a significant impact on our

results and can be eliminated by using the more compu-

tationally expensive positive-definite advection scheme

available in WRF.

The FT power spectrum for the T5 concentrations at

the three receptors (Fig. 4) shows evidence of the re-

trieved signals. The four primary peaks at r1 obviously

correspond to sig1–sig4, respectively (Fig. 4a). This is

consistent with the concentration time series plots for

the constant tracers (Fig. 3a), which indicate that all four

constant tracers were transported to r1 during some

period of the simulation. There is a small frequency shift

(from 21 to 22 cpd) for sig1 emitted from s1 at r1 (Table 2).

In addition to the primary frequencies, a nonnegligible

beat frequency exists at 44 cpd, which might be due to the

nonlinear interaction between the signals and the non-

constant wind field. At r2, the signal emitted from s2 (sig2;

31 cpd) was in the process of shifting to a higher frequency

(32 cpd; see Fig. 4b) while the amplitude for frequency 48

cpd, which corresponds to sig4, is much smaller than the

other three primary peaks. At r3, the farthest receptor

(Fig. 4c), the spectrum has three clear peaks at frequen-

cies 22, 32, and 40 cpd (Table 2). In this idealized case, all

frequency shifts appear to be in one direction (i.e., shifting

to higher frequency), and at r3 all of the signals were

shifted to slightly higher frequencies (Table 2). Because

these shifts are sufficiently smaller than the intervals be-

tween two successive signals, the signals are still distin-

guishable. The magnitude of T4 was too small relative to

the other constant tracers at r2 and r3 (Figs. 3b and 3c)

and, therefore, almost could not be detected in the spec-

trum analysis. A comparison of the three FT spectrum

FIG. 2. The simulated wind field at the first half-model-level 12-h

integrations. Four source locations (represented by a leading ‘‘s’’)

and three receptors (represented by a leading ‘‘r’’) were chosen for

the source–receptor experiment. The coordinates for the sources

and receptors are s1: (55, 40), s2: (50, 45), s3: (45, 50), s4: (40, 55), r1:

(30, 70), r2: (25, 80), and r3: (20, 90). The x and y axes are the

horizontal grid cells in the model domain.

TABLE 1. Distance (km) between the sources and receptors

for the idealized case study. Grid coordinates are shown in pa-

rentheses.

s1 (55, 40) s2 (50, 45) s3 (45, 50) s4 (40, 55)

r1 (30, 70) 78 64 50 36

r2 (25, 80) 100 86 72 58

r3 (20, 90) 122 108 94 81
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plots in Fig. 4 shows that the signal amplitudes get

smaller as the distance between the source and recep-

tor increases because of the fact that 1) lower amounts

of tracers reached the farther receptors, as demon-

strated in Fig. 3, and 2) the damping of the signal am-

plitude by diffusion is related to the transport distance.

Despite the slight shift in frequency, the signals re-

trieved from FT at all three receptors are consistent

with tracer simulations. The main sources contributing

to the receptors are identified (s1–s4 for r1, and s1–s3

for r2 and r3) from the FT results. The biggest distance

between the source and receptor (from s1 to r3) is

about 122 km, and the signals are still clearly shown

at the receptors. This implies that the signal technique

can potentially be applied to 3D regional real-data case

studies.

Next, the simulation results were analyzed using STFT

to get the frequency information for different time seg-

ments. As mentioned before, choosing an appropriate

time window length is very important for STFT analysis.

After testing several different window lengths, a 4-h time

window was selected to avoid losing too much frequency

FIG. 3. Time evolution of the concentration of T1–T4 received at (a) r1, (b) r2, and (c) r3. The

rectangular encompassed areas in (a) are the time windows for STFT analysis in Fig. 5; W4

spans hours 6–10 and W9 spans hours 16–20 at r1. The time window in r2 spans hours 14–18, and

that in r3 spans hours 16–20.
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information. Half-overlapping between two segments

was applied; thus, there were 11 windows for the 1-day

time period. Figure 5 shows the STFT power spectrum for

T5 concentration at the receptors, and the matching time

windows are depicted in Fig. 3. The power spectrum of

W4 (Fig. 5a) has three obvious peaks at frequencies 23,

33, and 42 cpd, corresponding to signals released from s1

to s3, respectively. There is an obscure bulge to the right

of the 42-cpd peak, which is very likely from sig4. It is not

well resolved because of the relatively poor frequency

resolution of the STFT. The STFT frequency shifts are

larger than those in the FT analysis. Window W9 has two

peaks at frequencies of 39 and 48 cpd, which correspond

to signals released from s3 and s4, respectively. The re-

sults of the simulated tracers received at r1 illustrate that

within the W4 time window the concentration of T4 was

much smaller than those from the other three sources

whereas for W9 the concentrations of T1 and T2 are al-

most negligible in comparison with those of T3 and T4

(Fig. 3a). The STFT spectra at r2 (Fig. 5c) and r3 (Fig. 5d)

TABLE 2. Retrieved signals (cpd) from FT analysis at the receptors

for the idealized-case simulation. The frequency-shift directions (H:

shifting to higher frequency; L: shifting to lower frequency; U: fre-

quency unchanged) are specified in parentheses following the fre-

quency. ‘‘None’’ indicates the corresponding frequency is not in the

spectrum.

sig1 (21) sig2 (31) sig3 (39) sig4 (47)

R1 22 (H) 31 (U) 39 (U) 47 (U)

R2 21 (U) 31–32 (H) 39 (U) 48 (H)

R3 22 (H) 32 (H) 40 (H) None

FIG. 4. FT power spectrum of T5 at (a) r1, (b) r2, and

(c) r3 for the idealized-case simulation. The frequencies

used for sigs 1–4 are 21, 31, 39, and 47 cpd.
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indicate that the tracers from all four sources contributed

to these receptors during the analysis time period, which

is consistent with the constant tracer results (Figs. 3b and

3c). However, the peaks of the spectrums at r2 and r3 are

less sharp with smaller amplitudes as compared with

those at r1 because of the longer transport. The STFT

spectrum has much less noise as compared with the FT

analysis (Fig. 4), and no evidence of secondary frequen-

cies (i.e., beat signal) exists in any of the STFT results.

However, the STFT-retrieved frequencies are broader

(i.e., less precise) than the FT results and the frequency

shifts seem to be more severe, both of which are likely

due to the lower resolution in frequency as compared

with FT. Therefore, to use STFT, relatively bigger fre-

quency intervals between signals are required.

e. Frequency diffusion sensitivity test

In this experiment, five tracers (T1–T5) were emitted

from the same source point, s1 in Fig. 2, with each of

them carrying one unique oscillatory signal (i.e., a unique

frequency). The frequencies used for T1–T5 were 21, 31,

39, 47, and 59 cpd, respectively. Otherwise, the numerical

experiment setup was identical to the previous experi-

ment. Hsu and Chang (1987) pointed out that the diffu-

sion effect depends on the signal frequency and the

distance between the source and receptor. Because all of

FIG. 5. STFT spectrum for (a) W4 and (b) W9 at receptor r1, (c) hours 14–18 at r2 and (d) hours 16–20 at r3. The time

windows for these STFT are shown in Fig. 3.
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the tracers were emitted from the same location (s1), the

distance between the source and each receptor is the

same for all of the tracers (i.e., T1–T5). The diffusion

effect with respect to the signal amplitude modulation of

different frequencies in 3D simulations can be studied.

The time series of tracer concentration were analyzed at

the three receptors using FT. The relationship between

the frequency and the damping effect is evident from the

power spectra of all five tracers at the receptors (Fig. 6

and Table 3). The frequencies at 21, 31, 39 and 47 cpd

were still detectable at all three receptors, and the am-

plitudes decreased as the frequencies increased. The

frequency modulation of the amplitude is demonstrated

well from this experiment, which indicates that fre-

quencies higher than 55 cpd might not be applicable for

the distance of about 80 km in this case study. The fre-

quency shift is also reflected in Table 3, and it is in-

teresting to see that no shift occurred to all of the

retrieved signals at the farthest receptor (r3), but some

nonneglectable beat frequencies appear at r3 (Fig. 6c)

after the relatively longer transport. This experiment

demonstrates that the diffusion effect on amplitude

damping is stronger for higher frequencies than for

lower frequencies in this 3D supercell simulation,

which is consistent with the 2D simulation results in Hsu

and Chang (1987).

4. Semireal-case experiment

We would like to investigate the feasibility of the

signal approach applied to real-world cases. However,

there are some practical limitations that must be con-

sidered. Chen and Hsu (2006) demonstrated that signals

were preserved better with the use of a 1.5-order prog-

nostic TKE scheme or Smagorinsky subgrid-scale eddy

diffusion (SGED) than with the use of the K-theory

diffusion scheme. Both of the SGED schemes are not

recommended for cases with horizontal resolution coarser

than 2 km (recommended in the WRF model). Such fine

resolution requires great computational resources to

conduct the simulation, which negates the advantage of

the signal approach—namely, reducing computational

demand by employing fewer tracers. This is an internal

limitation of the signal approach when applied to real

case studies. Because of the great computational demand

to conduct the simulation and the limitation of available

computational resources, the chosen case study’s analysis

domain only covers a small region, with the pollutant

transport distance on the order of 1000 km. As a result,

instead of solving real source–receptor relationships

for an air-pollution event, this case study is used to

demonstrate the signal technique under real atmo-

spheric conditions with synthetic sources and receptors

not necessarily located in large cities where high pollu-

tion amounts are typically observed. Therefore, this case

study is called a semireal case study.

a. Case selection

High-pollution episodes occurred in Istanbul, Turkey,

from 5 to 12 January 2002 (Kindap et al. 2006). During

that time period, an anticyclone located over central Eu-

rope resulted in strong winds and favorable conditions for

pollutant transport from upstream of Istanbul. Previous

studies (Kindap et al. 2006; Chen et al. 2008a) proved that

pollutants from upstream were transported to Istanbul by

northwesterly low-level flow and played a nonnegligible

role in this event. The episode from 0000 UTC 5 January

to 0000 UTC 8 January 2002 was selected to examine

the feasibility of applying the signal technique in a 3D

semireal case simulation to solve the source–receptor

relationships.

b. Model configuration

In this experiment, three nested domains (Fig. 7) were

configured with horizontal spatial resolutions of 30, 10,

and 2 km for domains 1–3 (d1–d3), respectively. All

three domains have 31 vertically stretched layers. Six-

hourly forecast outputs from the National Centers for

Environmental Prediction’s Global Forecast System

(GFS) model, with a spatial resolution of 18 3 18, were

used to provide the initial and boundary conditions.

Domains 1 and 2 were first integrated with two-way in-

teraction for all 3 days, from 0000 UTC 5 January to

0000 UTC 8 January 2002. During the integration, d1 was

nudged with the GFS reanalysis using four-dimensional

data assimilation to maintain large-scale features. Results

from d2 were one-way nested down to provide boundary

conditions for the d3 simulation, which was used to ex-

amine the signal technique. Time steps of 90, 30, and 10 s

were used for d1–d3, respectively. The signal and tracer

simulation was only performed in d3.

The Mellor–Yamada–Janjić TKE boundary layer

scheme (Mellor and Yamada 1982; Janjić 2002) and the

Kain–Fritsch cumulus parameterization scheme (Kain

and Fritsch 1993) were applied to d1 and d2. Thompson

microphysics, Dudhia shortwave radiation and Rapid

Radiative Transfer Model longwave radiation were used

for all three domains. Because of the fine spatial reso-

lution, no cumulus scheme was applied to d3. As men-

tioned previously, the signal approach has been shown

to work better with the SGED scheme; so, to be con-

sistent with the idealized case, the 1.5-order prognostic

TKE SGED was applied to this case study. Because of

the fine-resolution requirement of the TKE SGED

scheme (#2 km), it was applied to the d3 simulation

only. As in the idealized study, tracers and signals were
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emitted 12 h after the initial time in the d3 simulation.

The concentrations of the tracers and signals were saved

every minute for spectrum analysis.

c. Selection of sources and receptors and numerical
experiment design

The simulated wind field and sea surface pressure

(Fig. 7) from d1 illustrated that the simulation captured

the anticyclone circulation described in Chen et al.

(2008a), which assured strong winds (i.e., efficient

transport) in the d3 simulation. The selection of the

source and receptor locations in the real atmosphere was

more difficult than in the idealized case since the change

in wind patterns was more dramatic. Chen et al. (2008a)

demonstrated that, because of the strong static stability

during the event, pollutants that were transported

downstream were mainly trapped within 1.2 km depth

from the surface. Therefore, low-level winds were used

for reference to select source and receptor locations, and

FIG. 6. The power spectrum of FT at (a) r1, (b) r2, and

(c) r3 for five diffusion-effect experiments. The fre-

quencies carried by T1–T5 are 21, 31, 39, 47, and 59 cpd,

respectively.

TABLE 3. Retrieved signals (cpd) from FT analysis at the re-

ceptors for the sensitivity test. The amplitudes (order of 1024) for

the corresponding frequencies are specified in the parentheses in

the data rows.

sig1 (21) sig2 (31) sig3 (39) sig4 (47) sig5 (59)

r1 22 (2.31) 31 (1.22) 39 (0.92) 47 (0.51) None

r2 22 (2.07) 32 (1.49) 40 (0.79) 48 (0.27) None

r3 21 (1.58) 31 (1.15) 39 (0.68) 47 (0.29) None
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time series data collected at the first model level were

used for spectrum analysis.

As mentioned previously, the source and receptors in

this case study are not necessarily in the big cities. To

choose appropriate source and receptor points, dozens

of constant tracers were emitted from upstream of the

Istanbul area based on the lowest-level wind field. From

the pathways of those tracers, three source points (s1–s3)

were selected (Fig. 8). Frequencies of 15, 21, and 27 cpd

were chosen for signals emitted from s1, s2, and s3, re-

ceptively. All three signals used the same amplitude

(0.0018 units per second), and they were summed and

saved in tracer 4 (i.e., T4). Tracers T1–T3 with the same

emission rate were released from sources s1–s3, re-

spectively, for validation of the signal technique, as in

the idealized case. To be consistent with the signals, the

emission rate of 0.0018 units per second is applied to all

three constant tracers.

d. Results

Two receptors downstream of s1–s3 were chosen

(Fig. 8). The distances between the sources and receptors,

as well as the coordinates for each of them, are shown in

Table 4. The time evolution of tracer concentrations for

T1–T3 at both receptors is illustrated in Fig. 9 for the time

periods when the tracers passed the receptors. Relative to

r2, r1 is closer to the sources, and therefore T1 and T2

arrived at r1 several hours earlier than they arrived at r2.

About 37 h after the initial time, all three tracers reached

r2, and they continuously passed there for about 14 h. A

12-h time window STFT was used to decompose the T4

(with signals) concentration so as to include the major

time periods during which the receptors continuously

received the tracers. Therefore, the window covers dif-

ferent time segments for r1 (hours 36–48) and r2 (hours

38–50) (Fig. 9). The spectrum for r1 within the 12-h time

window (Fig. 10a) has two distinct peaks at 15 and 21 cpd,

which correspond to the signals emitted from s1 and s2,

respectively. This is consistent with the tracer concen-

tration plot at r1 in Fig. 9a, which showed that only T1 and

T2 were received by r1 during the analysis time window.

For the spectrum at r2, three primary peaks were ob-

tained at 14, 20, and 27 cpd, corresponding to signals from

s1, s2, and s3, respectively. As in the idealized case, there

was a secondary peak (i.e., beat) at 23 cpd due to the

nonlinear effect in the numerical simulation. It is noticed

again that signals from s1 and s2 were shifted slightly to

lower frequencies when received at r2. Note that the shift

direction here is different from the idealized case in which

the frequencies were shifted higher. The frequency shifts

FIG. 7. Nested domains for the semireal-case simulation with sea level pressure (shaded; hPa)

and surface wind vectors at 1200 UTC 5 Jan 2002.
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(which require a certain amount of time and/or transport

distance to manifest themselves) occur in both the ide-

alized and semireal cases.

Figure 11 shows the time-averaged tracer amounts of

T1–3 received at r1 and r2 over the aforementioned 12-h

period. Because of the setup of this case study (i.e., r1 is

upstream of s3), T3 is not received at r1. At r1, more T2

is received than T1 (Fig. 11) and the spectrum for sig2 is

larger than for sig1 (Fig. 10a), indicating that the two

components of the diffusion effect (distance and fre-

quency) counteract each other, with the spectrum re-

flecting the relative source contribution, to some degree,

for this case. At r2, the amounts of T1 (sig1) and T2

(sig2) received were very similar to those received at r1

(Figs. 10b and 11). However, because the relative dis-

tances between the source points s1 and s2 are smaller

for r2 than for r1, there was a stronger damping effect

on the higher-frequency signal (sig2) than the lower-

frequency signal (sig1) at r2 (Fig. 10). However, the sig2

received at r2 was still slightly larger than the sig1 be-

cause the amount of tracer received was slightly larger

(Fig. 11). With similar amounts of T1 received at r1 and

r2, although the transport distance to r2 is longer than to

r1, the retrieved sig1 spectrum at r2 is stronger than at r1.

One possible reason for this result is that the spectrum

band for sig1 is sharper at r2 than at r1. The more the

spectrum band spreads, the greater is the reduction in the

magnitude. Despite the fact that more T1 was received

at r2 than T3, the spectrum values for these two signals

were almost the same in Fig. 10b. This is because the

signal from s1 was diffused more because of a much

longer transport distance (;180 km) than the signal

from s3 (;50 km), even though sig3 has a higher fre-

quency (i.e., more diffuse) than sig1. This implies that the

difference in transport distance dominated the signal-

damping effect rather than the differences in frequency

for this particular situation (i.e., T1 and T3 received at r2).

Therefore, spectrum analysis can reflect the significance

of the emission source to some degree but not the

amount because the damping rate on a signal’s ampli-

tude is not only influenced by the transport distance but

is also affected by the frequency, yet there is no clear

correlation between these two factors (i.e., distance and

frequency).

A shorter time window (6 h) was also applied to the

T4 concentration time series received at r2. The two

periods are hours 38–44 (W1) and 44–50 (W2), which

are equivalent to the first and second halves of the

FIG. 8. Snapshots of simulated constant tracers on the first level and wind vectors at 950 hPa after (a) 36 and (b) 42 h of simulation. Here,

T1 (shaded) is released from s1, T2 (solid lines) is released from s2, and T3 (dashed lines) is released from s3. The x and y axes are the grids

in the east–west and south–north directions of domain 3. The two receptors are denoted as r1 and r2. Note that r1 is upwind of s3.

TABLE 4. As in Table 1, but for the semireal case study. Note that

no tracers from s3 are transported to r1 because r1 is upwind of s3.

s1 (170, 190) s2 (200, 180) s3 (230, 160)

r1 (215, 170) 98 36 —

r2 (243, 140) 177 117 48
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previously used 12-h time window at r2. The three peaks

are 13, 19, and 27 cpd for W1 (Fig. 12a), and 14, 22, and

27 cpd for W2 (Fig. 12b). It is interesting that there are

no apparent 23-cpd beat signals similar to the ones in the

12-h window analysis in Fig. 10b. However, the retrieved

signal spectrums were wider (i.e., less precise) than the

12-h window results, indicating that a higher resolution

in time was obtained (i.e., 6- vs 12-h time resolution) at

the cost of losing accuracy in signal frequency. It is no-

ticed that the amplitudes of sig1 and sig2 are much

bigger than that of sig3 in the W1 spectrum (Fig. 12a),

despite the shorter distance between s3 and r2. For most

of the time within W1, the concentration of T1 and T2

is more than 2 times that of the T3 concentration at r2

(Fig. 9b). The higher amplitudes may also be related to

the frequency shifts of sig1 and sig2 to lower frequencies

by 2 cpd, which in theory would lead to less of a diffusion

damping effect. In the W2 results (Fig. 12b), the signal

from s1 is damped out the most. In addition to a longer

distance, this damping might be related to the less con-

tinuous concentration of T1 at r2 (Fig. 9b) so that not

many full cycles of sig1 were received (i.e., broken signal

cycles, as sig1 has the lowest frequency). Although there

are some unresolved issues, the STFT results, from both

the 12- and 6-h windows, captured the three signals that

were supposed to be received at the receptors, and the

spectrum values could moderately represent the relative

source contribution, but not the exact fraction. The re-

sults are consistent with tracer simulations.

5. Conclusions and future work

An online tracer model was developed by implement-

ing a tracer conservation equation into the WRF model.

In theory, the online approach should better simulate the

source–receptor relationships because it avoids the main

sources of error in the offline approach. One major

FIG. 9. Concentration time series plots of T1–T3 at (a) r1 and

(b) r2. The two rectangular encompassed areas are the 12-h win-

dow coverage for STFT analysis. Note that there is no T3 at r1

because s2 was located downstream of r1.

FIG. 10. The 12-h STFT spectrum plots for (a) r1 and (b) r2 from the rectangular time periods in Figs. 9a and 9b,

respectively. The frequencies carried in the tracer are 15, 21, and 27 cpd. Note that there is no sig3 at r1 because s3 was

located downstream of r1.
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problem with the online approach is the tremendous

computational resources required for a large-airshed

simulation. The signal technique could potentially alle-

viate this problem by using signals of different frequen-

cies instead of many separate tracers to differentiate

pollutants emitted from different locations.

The primary goal of this study is to assess the perfor-

mance of this signal technique in the complex 3D non-

hydrostatic online WRF tracer model. The evaluation

was carried out using a 3D idealized supercell case and

a semireal air-pollution case. Although the signals were

damped by the diffusion effect, the spectrum analysis

results from either FT or STFT were consistent with the

constant-tracer simulations used to verify the signal

technique for both cases. Although only a semireal case is

conducted in this study, with enough computer resources

this signal technique should be able to solve real air-

pollution cases in which the signals are emitted from the

potential emission sources (big cities) and spectrum

analysis is conducted at the locations of interest. A no-

ticeable frequency shift appeared in some spectrum re-

sults as a result of a nonconstant wind, and secondary

frequencies (i.e., beats) were obtained because of non-

linear effects. With a shorter STFT time window, the

spectrum had fewer beat frequencies, but the peak

spectrum bands were wider and the frequency shift

problem was more apparent. The frequency shift, spread,

and beat frequencies due to the nonconstant wind in the

real atmosphere will add difficulty for signal identification

at the receptors. In addition, all of these internal prob-

lems associated with this signal technique are more sig-

nificant as the transport distance increases; thus, this

technique can be only applied to solve medium-range

transport within about 1000 km. The frequency de-

pendence of the diffusion effect (too-high frequencies are

not usable) and the existing waves in the atmosphere

(too-low frequencies are not usable) constrains the suit-

able frequencies for this signal approach to a relatively

small range. One way to solve this problem is to use

smaller frequency intervals, which then requires a more

FIG. 11. Averaged tracer amounts at r1 and r2 over the 12-h time

period (hours 36–48 for r1 and 38–50 for r2). Note that there is no

T3 at r1 because s3 was located downstream of r1.

FIG. 12. The 6-h time-window STFT analysis at r2 for the time periods of (a) hours 38–44 (W1) and (b) hours

44–50 (W2).
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advanced time series analysis tool to obtain the spectrum.

The spectrum could not show the exact contribution

fraction because of the damping effects of distance and

different frequencies. However, this signal technique

might be applied as a screening tool to sort out the im-

portant sources in real air-pollution cases. Then, a tracer

method could be applied to find the exact source–receptor

relationship.

Note that with chemical reactions, which are very

important for air-pollution problems, there will be new

frequencies generated by interactions between the

existing signals. For example, if a secondary pollutant

species is formed from the chemical interaction between

one species from source A tagged with a signal fre-

quency of f1 and the other from source B tagged with

a signal frequency of f2, this secondary species would be

associated with the frequency of jf1 1 f2j and jf1 2 f2j.
Signal identification becomes much more complex. This

issue needs to be explored in more depth in the future to

be able to solve actual air-pollution problems.
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