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a b s t r a c t

Comparisons were made between three sets of meteorological fields used to support air quality predic-
tions for the California Regional Particulate Air Quality Study (CRPAQS) winter episode from December 15,
2000 to January 6, 2001. The first set of fields was interpolated from observations using an objective
analysis method. The second set of fields was generated using the WRF prognostic model without data
assimilation. The third set of fields was generated using the WRF prognostic model with the four-
dimensional data assimilation (FDDA) technique. The UCD/CIT air quality model was applied with each set
of meteorological fields to predict the concentrations of airborne particulatematter and gaseous species in
central California. The results show that the WRF model without data assimilation over-predicts surface
wind speed byw30% on average and consequently yields under-predictions for all PM and gaseous species
except sulfate (S(VI)) and ozone(O3). The WRF model with FDDA improves the agreement between pre-
dicted and observed wind and temperature values and consequently yields improved predictions for all
PM and gaseous species. Overall, diagnostic meteorological fields produced more accurate air quality
predictions than either version of the WRF prognostic fields during this episode. Population-weighted
average PM2.5 exposure is 40% higher using diagnostic meteorological fields compared to prognostic
meteorological fields created without data assimilation. These results suggest diagnostic meteorological
fields based on a densemeasurement network are the preferred choice for air quality model studies during
stagnant periods in locations with complex topography.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Meteorology is a key factor that influences the severity of air
pollution events. Air quality models use emissions inventories and
meteorological fields to identify the dominant emissions sources
that can be controlled to improve air quality. The continuous
meteorological fields required by air quality models can be inter-
polated based on measured data (diagnostic meteorological fields)
or they can be generated by global or limited-area weather or
climate models (prognostic meteorological fields). Diagnostic fields
represent the actual state of the atmosphere at the measurement
sites, but their accuracy is often limited by insufficient spatial or
temporal measurement density. Diagnostic meteorological fields
also lack dynamic consistency among the variables since they are
not based on the complete primitive equations (Seaman, 2000).
: þ1 530 752 7872.
eman).
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Prognostic meteorology models have been developed to overcome
the shortcomings of diagnostic models. Prognostic models predict
values for meteorological variables by solving the atmospheric
dynamic equations. Examples of prognostic models include the
Penn State University/National Center for Atmospheric Research
(PSU/NCAR) Fifth Generation Mesoscale Model (MM5) (Grell et al.,
1994), the Colorado State University Regional Atmospheric
Modeling System (CSU-RAMS) (Pielke et al., 1992), and the
recently-developed Weather Research and Forecasting (WRF)
Model (Skamarock et al., 2005; Skamarock and Klemp, 2008).
Prognostic models do not require extensive observation networks
to generate meteorological fields; however, imperfections in the
various physical parameterizations, numerics, and inputs (such as
initial and boundary conditions) cause prediction errors. The
capability of prognostic models to produce accurate meteorological
fields has been improved dramatically through better physical
parameterizations, the use of data assimilation methods, and the
increased resolution of the horizontal and vertical grid spacing
(Seaman, 2003).
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Both diagnostic and prognostic meteorological fields have been
widely used for air quality modeling studies (Hanna et al., 1996;
Hogrefe et al., 2001a,b; Sistla et al., 2001; Jiang and Fast, 2004;
Jimenez et al., 2006; Ying et al., 2007, 2008). Diagnostic approaches
have successfully represented the meteorology for air quality
modeling in the South Coast Air Basin (Mysliwiec and Kleeman,
2002; Ying et al., 2007; Kleeman et al., 2007) and the Central Valley
of California (Held et al., 2004; Ying and Kleeman, 2006; Ying et al.,
2008). One reason for the persistence of diagnostic models in
California is that prognostic models tend to have difficulties simu-
lating accuratemeteorological fields in complex topography. Kumar
and Russell (1996) studied the performance of the CIT (Carnegie/
California Institute of Technology) photochemical air quality model
for the Southern California Air Quality Study (SCAQS) with prog-
nostic meteorological fields generated by the forth PSU/NCAR
mesoscale model (MM4) that includes four-dimensional data
assimilation (FDDA, Stauffer and Seaman, 1990, 1994; Stauffer et al.,
1991) and found that the results were less satisfactory than those
obtained using diagnostic fields. Soong et al. (2004) used three sets
of prognosticmeteorologicalfields generatedbyMM5withdifferent
physical configurations and with/without FDDA to drive the
Comprehensive Air quality Model with extensions (CAMx) during
the Central California Ozone Study (CCOS). Liang et al. (2004)
simulated the same CCOS episode using MM5 and the Community
Multiscale Air Quality model (CMAQ) and compared the CMAQ
results with CAMx results. The performance of both air quality
models in the two studies was less than satisfactory. Jackson et al.
(2006) tested a hybrid approach toproducemeteorologicalfields for
the July/August 2000 CCOS episode. They used the CALMET diag-
nostic model to improve agreement betweenMM5 simulated fields
and theobservedair temperatureandwindspeedand found that the
hybrid meteorological fields generated better ozone predictions for
central California thanMM5fields alone. Punet al. (2009) conducted
PM simulations using the MM5 meteorological model and the
CommunityMultiscale Air Quality model with theModel of Aerosol
Dynamics, Reaction, Ionization, and Dissolution (CMAQ/MADRID)
for a subset (December 25theDecember 31st, 2000) of the CRPAQS
episode. AverageMM5prognosticwind speedswere over-predicted
by 0.73 m s�1 and the average surface temperatures were over-
predicted by2K, leading to aw35%over-prediction for 24-h average
PM nitrate concentration and a w22% under-prediction for 24-h
average total PM2.5 mass.

The purpose of this study is to evaluate the air quality model
performance for the full CRPAQS 2000e2001 winter episode
(December 15th, 2000eJanuary 6th, 2001) driven by three different
sets of meteorological fields. The first set of fields was generated by
a diagnostic meteorological model based on measurements using
the objective analysis method. The second and third sets of fields
were generated using the prognostic WRF model with and without
FDDA, respectively. The UCD/CIT air quality model was applied to
predict the concentrations of gaseous and particle species using
each of the meteorological fields in turn. Model predictions for PM
species were then compared to ambient measurements in the
heavily polluted San Joaquin Valley (SJV).

2. Model description

The UCD/CIT air quality model used in the present study is based
on the CIT airshed model (McRae et al., 1982; Harley et al., 1993). A
detailed description of the UCD/CIT model and the history of its
evolution have been presented in previous studies (Kleeman et al.,
1997; Kleeman and Cass, 2001; Mysliwiec and Kleeman, 2002; Ying
and Kleeman, 2003, 2006; Held et al., 2004; Ying et al., 2008), so
only the aspects that were changed during the current study are
discussed here. The UCD/CIT air quality model was revised for the
current project to be compatible with both prognostic wind fields
(C-grid) and diagnostic wind fields (A-grid). Previous studies (Byun,
1999; Odman and Russell, 2000; Lee et al., 2004; Hu et al., 2006;
Sportisse et al., 2007) have discussed the occurrence of mass
consistency errors when the meteorological model and the chem-
istry-transport model do not use the same grid system, the same
interpolation strategies and/or the same transport algorithms. Two
correction methods are commonly used in air quality models to
overcome this problem. The first correction method transports
a uniform tracer along with other species so that concentrations
can be re-normalized after each time step. The second correction
method directly adjusts the vertical wind velocity within the
framework of the air quality model in order to satisfy mass
consistency. Hu et al. (2006) examined both correction methods
using MM5 and CMAQ and proved that adjusting the vertical wind
velocity is an effective method to conserve mass. Recalculation of
vertical winds was therefore incorporated into the UCD/CIT
framework. The approach for gaseparticle transfer of inorganic
species was updated in the current study to increase the model
speed. The vapor pressure of semi-volatile inorganic species above
each particle surface was calculated based on ISORROPIA II (http://
nenes.eas.gatech.edu/ISORROPIA; Nenes et al., 1998; Fountoukis
and Nenes, 2007). Gaseparticle mass transfer was calculated based
on the solution to the dynamic equations developed by Jacobson
(2005). The combination of these changes increases the speed of
model calculations by roughly a factor of two. Other aspects of the
UCD/CIT reactive chemical transport model (e.g., gas-phase mech-
anism, advection scheme, deposition scheme, and secondary
organic aerosol calculation, etc.) have been described by Ying et al.
(2008), and are not repeated here.

3. Model application

Three sets of simulations were conducted in the current study
using one set of diagnostic meteorological fields and two sets of
prognostic meteorological fields. Each of the simulations predicted
air quality in California's central valley from December 15th, 2000
to January 6th, 2001. The model domain (see Fig. 6) has
95 � 95 � 10 grid cells (xyz), with a horizontal resolution of 8 km
and vertical layers up to 5 km. The thickness of each vertical layer
starting from the surface is 35, 105, 140, 330, 390, 500, 500, 1000,
1000, and 1000 m.

3.1. Diagnostic meteorological fields

A detailed description of the diagnostic meteorological fields is
provided by Ying et al. (2008) and so only a brief description of the
diagnostic methods are summarized here. The diagnostic 3D
temperature, humidity and wind fields were interpolated from
surface and vertical meteorological measurements using the
objective analysis method described by Goodin et al. (1979, 1980).
Hourly surface measurements of wind (120 stations), humidity
(132 stations) and temperature (192 stations) were collected
throughout the portion of the modeling domain over land. Hourly
vertical wind and virtual temperature profiles were collected at 20
stations during the entire study period. Balloon soundings of rela-
tive humidity at Oakland, Fresno, and Bakersfield were measured
four times a day on December 15e18, December 26e28, 2000, and
January 4e7, 2001. The humidity measurements were linearly
interpolated temporally to generate hourly humidity inputs for the
objective analysis program. For the days without humidity
measurement, the nearest day was taken as a surrogate day for the
humidity fields. There were no observations of wind, temperature,
and humidity over the Pacific Ocean. The results from a MM5
simulation performed by staff at the California Air Resources Board
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(CARB) were used as surrogate observations at 17 virtual stations to
provide the best possible estimate of meteorological conditions.
There were no background model fields used over land area. The
Noilhan and Planton land-surface parameterization scheme
(Noilhan and Planton, 1989) was used to estimate the sensible and
latent heat flux from the ground. Equation 6.18 on page 155 in
Garratt's book (Garratt, 1994) was then applied to calculate the
development of the convective mixing layer height during the day.
The mixing height at night was believed to be low due to radiative
cooling of the surface and was fixed at 50 m. The convective mixing
layer was assumed to collapse immediately after the sun went
down (solar zenith angle > 85�).

3.2. Prognostic meteorological fields

Two sets of prognostic fields were generated with version 2.2 of
the Advanced Research WRF (ARW) model using 3 nested domains
(2-way interactionwith feedback) that had horizontal resolutions of
36, 12, and 4 km, respectively. The first WRF simulation did not
employ any data nudging while the second WRF simulation
employed the observationnudging technique in all three domains at
all model levels for temperature, moisture, andwind, and employed
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Fig. 1. Time series of ground-level observed and simulated (a) wind speed and (b) temperatu
near Bakersfield (about 30 km north of Bakersfield).
the reanalysis nudging in the 36-km domain above the boundary
layer. All WRF simulations were configured with the Thompson
graupel microphysics scheme (Thompson et al., 2004), Mon-
ineObukhov surface layer scheme (Skamarock et al., 2005), Noah
land-surfacemodel (Chen and Dudhia, 2001), and YonSei University
(YSU, Hong et al., 2006) boundary layer scheme. This optimal
configurationwas chosen based on a study conducted by Zhan et al.
(in preparation) in which various WRF configurations were tested
for conditions in central California. The 4 km meteorological fields
generated by theWRFmodelwere then averaged to8 km to produce
the inputs forair qualitymodeling. It is commonlybelieved thatfiner
grid size in meteorology simulation provides a better description of
small-scale dynamics (e.g., landesea breezes and orographical
winds). The combination of 4 km meteorological simulations and
8 km air quality simulations yields an efficient combination of the
models without significant loss of accuracy. Finer resolutions have
shown to improve air quality predictions (Hass et al., 1997);
however, other studies have found that (beyond a certain point)
finer grid resolution does not necessarily yield better air quality
predictions (Menut et al., 2005). One possible explanation for this
finding is that the current generation of first-order turbulence
closure schemes employed in regional air quality models are
12/30 1/4
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re at the Fresno station; and (c) wind speed and (d) temperature at the Famoso station



Table 1
Statistics of meteorology parameters in DIA, WRF and FDDAmeteorology. RMSE and
MAE are the root mean squared error and the mean absolute error, respectively.

Meteorological field Domain SJV

Mean RMSE MAE Mean RMSE MAE

Temp (�C) Obs 8.8 e e 6.9 e e

DIA 9.1 3.2 2.5 8.4 3.1 2.4
WRF 8.4 5.0 4.0 8.1 5.1 4.1
FDDA 10.3 4.8 3.8 9.7 5.0 4.0

RH (%) Obs 65.7 e e 73.2 e e

DIA 59.0 18.9 15.1 60.0 20.7 17.3
WRF 63.4 24.7 19.3 65.0 22.8 17.8
FDDA 55.3 25.0 19.7 62.1 23.5 18.4

U_wind Obs 1.22 e e 0.72 e e

DIA 1.12 1.58 0.92 0.67 0.67 0.48
WRF 1.52 1.86 1.30 1.25 1.18 0.84
FDDA 1.33 1.61 1.06 0.87 1.07 0.70

V_wind Obs 1.22 e e 0.78 e e

DIA 1.13 1.47 0.88 0.70 0.77 0.52
WRF 1.67 1.88 1.34 1.01 1.10 0.78
FDDA 1.45 1.69 1.10 0.69 0.98 0.67
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Fig. 2. Time series of PM2.5 mass concentration at Sacramento (SDP), Fresno (FSF), Angiola (
diagnostic (DIA), WRF-simulated (WRF), and WRF-FDDA simulated (FDDA) meteorology.
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effectively tuned for a grid resolution of 4e5 km. Ying et al. (2008)
studied the effects of horizontal resolution on air quality model
predictions during the winter CRPAQS study and found that the
model predictions using 4 km and 8 km resolution generally agree
with one another except that the coarser resolution leads to slightly
lower concentrations of primary pollutants near emission sources
by distributing the emissions evenly in the coarser cell.

3.3. Other inputs

All three simulations carried out in current study used the
emissions inventory, initial and boundary conditions and other
inputs described by Ying et al. (2008).

4. Results and discussion

The general synoptic pattern during CRPAQS 2000 winter
episode was strong high pressure aloft positioned along the West
Coast providing a general area of subsidence and stable meteoro-
logical conditions over the SJV. High pressure gradually intensified
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over SJV from December 12th to 20th. A weak upper level distur-
bance briefly broke down the ridge on December 24th, which
slightly improved the dispersion conditions. After this weak trough
passage, the high pressure rebuilt and stable meteorological
conditions continued through the endof the episode on January 7th,
2001. Fig.1 illustrates the timeseries of ground-levelwindspeedand
temperaturemeasured during the CRPAQS episode (OBS), generated
by the diagnostic interpolation method (DIA), simulated by WRF
model with no data assimilation (WRF), and simulated by the WRF
model with the FDDA technique (FDDA) for all hours at Fresno and
Famoso (about 30 km north of Bakersfield). The results reveal that
the DIA and FDDA wind speed are in excellent agreement with
observations,whileWRFpredictionswithnodata assimilation over-
estimate the surface wind. The predicted and observed diurnal
variation of temperature is also in excellent agreement, but theWRF
prognostic temperature is greater than observations at night and
lower than observations during the day, especially at the Famoso
station. FDDA improves the WRF daytime temperature predictions
significantly at Fresno and Famoso. FDDA also improves nighttime
temperature predictions at Fresno but nighttime temperature is still
over-predicted at Famoso.
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Table 1 presents root mean squared errors (RMSE) and mean
absolute errors (MAE) summarizing the comparison between the
observed and simulated meteorological parameters of interest for
air pollutionmodeling using all observations in the entire modeling
domain and in SJV, respectively. The average measured surface
wind components in the entire domain are U ¼ 1.2 and
V ¼ 1.2 m s�1; with slightly smaller values of U ¼ 0.72 and
V ¼ 0.78 m s�1 in SJV. This low surface wind speed reflects very
stagnant conditions during the CRPAQS episode. The diagnostic
method slightly under-predicts the wind speeds, resulting in
RMSEU ¼ 1.58 m s�1 and RMSEV ¼ 1.47 m s�1 in the entire domain,
and RMSEU ¼ 0.67 m s�1 and RMSEV ¼ 0.77 m s�1 in the SJV. WRF
with no data assimilation tends to over-predict the mean wind
speed by 30% with RMSEU ¼ 1.86 m s�1 and RMSEV ¼ 1.88 m s�1 in
the entire domain, and RMSEU¼ 1.18m s�1 and RMSEV¼ 1.10 m s�1

in the SJV. WRF with data assimilation slightly over-predicts the
mean wind speed by 10% with RMSEU ¼ 1.61 m s�1 and
RMSEV ¼ 1.69 m s�1 in the entire domain but performs better in the
SJV with RMSEU ¼ 1.07 m s�1 and RMSEV ¼ 0.98 m s�1. The mean
observed temperature and relative humidity across the entire
domain is 8.8 �C and 65.7%, respectively. Diagnostic temperature is
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0.3 �C higher than observations with a RMSE of 3.2 �C. Although
WRF with no data assimilation under-predicts daytime tempera-
ture and over-predicts nighttime temperature (as shown in Fig. 1),
the average temperature is 0.4 �C lower than observations with an
RMSE of 5.0 �C. The averageWRF-FDDA temperature is 1.5 �C higher
than observations but with a slightly lower RMSE of 4.8 �C, because
FDDA leads to relatively accurate predictions for daytime temper-
ature, but nighttime temperatures are still over-predicted. Domain-
wide average relative humidity predicted by the Diagnostic, WRF
and FDDA models is lower than observation by a RMSE of 18.9%,
24.7% and 25.0%, respectively. The higher temperature predicted by
theWRF-FDDAmodel leads to lower relative humidity compared to
the other models. Trends for temperature and humidity in the SJV
are similar to those observed for the entire domain.

Fig. 2 illustrates a comparison between ambient measurements
of PM2.5 mass concentration and predicted PM2.5 generated with
the diagnostic and prognostic meteorology fields. Comparisons are
made at four central valley stations: Sacramento (SDP), Fresno
(FSF), Angiola (ANGI) and Bakersfield (BAC), arranged from north to
south. SDP, FSF, and BAC are the three major urban sites in the
central valley while ANGI is a rural site. Overall, the air quality
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Fig. 4. Time series of N(V) mass concentration at Sacramento (SDP), Fresno (FSF), Angiola (
diagnostic (DIA), WRF-simulated (WRF), and WRF-FDDA simulated (FDDA) meteorology.
predictions made using any of the prognostic or diagnostic mete-
orological fields capture the increased PM2.5 concentrations during
the evening hours at the urban sites due to the effects of decreased
vertical mixing and increased emissions mostly from wood
combustion at night (Ying et al., 2008). PM2.5 predictions generated
using the diagnostic fields are generally higher than the predictions
generated with the WRF and FDDA prognostic fields because
diagnostic fields exhibit lower mixing depths and lower wind
speeds leading to less dilution. All three predictions are reasonably
close to observations for most days during the episode at the SDP
site, but they all under-predict the peak values between December
30th, 2000 and January 3rd, 2001, which indicates a likely emis-
sions under-estimation or an under-prediction of secondary PM
formation on these days. FDDA prognostic PM2.5 predictions are in
excellent agreement with observations at the FSF site, while the
diagnostic PM2.5 predictions are 40% higher than measurements
and WRF prognostic PM2.5 predictions are 18% lower than
measurements. At the BAC site, the differences between the diag-
nostic and prognostic meteorology fields cause even more notice-
able changes in PM2.5 predictions: diagnostic PM2.5 predictions are
significantly higher than measured values from December 15th to
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29th and lower thanmeasured values from January 2nd to 6th. Both
WRF and FDDA prognostic PM2.5 predictions are in good agreement
with measured values from December 15th to 28th, but signifi-
cantly lower than measured values for the rest of the episode. The
differences between diagnostic and prognostic predictions at this
foothills site are much larger than at other sites, reflecting the
difficulty in simulating small-scale circulations generated by the
complex terrain. At the rural ANGI site, the diagnostic and prog-
nostic PM2.5 predictions have similar diurnal patterns, but none of
themodel predictionsmatch the observed diurnal pattern. All three
predictions miss the high PM2.5 concentrations at the end of the
episode (January 3rde6th), but have a reasonably good agreement
with observations from December 15th to January 2nd.

Fig. 3 shows the measured and predicted particulate organic
carbon (OC) concentrations at SDP, FSF, ANGI and BAC.Winter OC at
urban locations in the SJV ismainly associatedwith primary sources
(Ying et al., 2008) and so the prognostic vs. diagnostic predictions
follow expected trends based on different amounts of dilution
acting on the same emissions. Overall, OC concentrations are
significantly under-predicted using all three versions of the mete-
orological fields.WRFandWRF-FDDA prognostic OC predictions are
even lower than diagnostic predictions due to the higher mixing
depth and higher wind speed in the prognostic meteorological
fields. Diagnostic and prognostic OC predictions at the SDP site have
similar values. OC predictions from December 15th to 18th are in
good agreement with observed concentrations, while predicted OC
concentrations are 2e3 times lower than the observed concentra-
tions on December 26th and 27th. At the FSF site, diagnostic OC
predictions are in a reasonably good agreement with measured
Table 2
Mean fractional biases of PM and gas species.

SITE ANGI BAC BTI FSF SNFH

PM2.5 DIA 0.44 0.31 0.37 0.39 �0.60
WRF �0.15 �0.47 �0.18 �0.13 �0.67
FDDA 0.17 �0.22 0.10 0.08 �0.55

N(V) DIA 0.83 0.01 0.98 0.21 �0.15
WRF 0.04 �0.89 0.40 �0.29 �0.34
FDDA 0.53 �0.43 0.71 0.12 �0.12

N(�III) DIA �0.66 �0.16 0.62 �0.58 �0.19
WRF �1.12 �0.79 0.10 �1.00 �0.32
FDDA �0.85 �0.57 0.48 �0.73 �0.11

S(VI) DIA 0.14 0.48 0.84 0.65 0.58
WRF �0.06 �0.07 0.75 0.27 0.54
FDDA 0.05 0.05 0.86 0.42 0.60

EC DIA �0.10 0.18 �0.02 0.05 �0.77
WRF �0.58 �0.71 �0.57 �0.71 �0.84
FDDA �0.29 �0.60 �0.23 �0.47 �0.74

OC DIA �0.89 0.20 �0.25 �0.08 �1.28
WRF �1.20 �0.63 �0.80 �0.73 �1.36
FDDA �1.07 �0.48 �0.50 �0.54 �1.29

O3 DIA 0.56 �0.29 �0.01 �0.32 0.23
WRF 0.55 0.07 0.36 �0.06 0.28
FDDA 0.62 �0.01 0.19 �0.11 0.26

NO DIA �1.14 0.23 �0.38 0.07 �0.61
WRF �1.47 �0.73 �0.83 �0.65 �0.08
FDDA �1.25 �0.50 �0.82 �0.49 �0.31

NO2 DIA 0.09 0.24 �0.05 0.25 �0.88
WRF �0.07 �0.24 �0.44 �0.15 �0.98
FDDA �0.03 �0.17 �0.28 �0.10 �0.77

CO DIA e 0.10 0.04 0.03 e

WRF e �0.36 �0.14 �0.38 e

FDDA e �0.30 �0.09 �0.33 e

a Site SRF for gas species, 33.9 km to BODB.
b Site VCS for gas species, 44.7 km to SEQU.
values while WRF and FDDA prognostic OC predictions are lower
than the observations. In contrast, diagnostic OC predictions at the
BAC urban site are higher thanmeasurements whileWRF and FDDA
prognostic OC predictions are in reasonable agreement with the
measured values. At the rural ANGI site, both diagnostic and prog-
nostic OC predictions are lower than the measured concentrations,
possibly due to missing emissions (Ying et al., 2008) or due to an
under-prediction of secondary organic aerosol (SOA) formation in
the rural environment where SOA becomes an important source of
OC (Chen et al., in press).

Fig. 4 shows the measured and predicted PM nitrate (N(V))
concentrations at SDP, FSF, ANGI and BAC. Both measured and
predicted N(V) concentrations have less of a diurnal cycle than OC,
with a gradual buildup observed throughout the episode as NOx is
slowly converted to nitric acid by ozone (Ying et al., 2008). N(V)
production involves transport of both gas-phase and particle-phase
reactive nitrogen species and their chemical conversion to partic-
ulate nitrate. Overall WRF and FDDA prognostic N(V) predictions
are lower than diagnostic N(V) predictions, yielding a trend similar
to that for PM2.5 mass and particulate OC. The diagnostic and FDDA
prognostic N(V) predictions at SDF and FSF are in a good agreement
with measured values, while the WRF prognostic N(V) predictions
are generally lower than measured values at the urban sites and
higher at the rural site. It should be noted that the continuous N(V)
measurements at FSF, ANGI, and BAC are lower than filter-based N
(V) measurements at those sites, suggesting that the continuous
measurements may be biased low.

Table 2 shows the calculated mean fractional bias (MFB) for
PM2.5, N(V), ammonium ion (N(�III)), S(VI), elemental carbon (EC),
M14 SDP DAV BODBa SEQUb OVERALL

e 0.16 e e e 0.19
e �0.20 e e e �0.30
e �0.01 e e e �0.07

0.08 �0.03 0.47 0.62 �1.08 0.23
�0.57 �0.60 0.24 0.05 �0.89 �0.30
�0.13 0.03 0.04 0.36 �0.65 0.08

�0.05 0.02 �0.14 1.06 0.02 0.01
�0.61 �0.42 �0.14 0.66 �0.05 �0.38
�0.24 0.12 �0.48 0.92 0.11 �0.12

0.44 0.54 0.96 0.05 0.50 0.48
0.06 0.33 0.93 �0.02 0.48 0.27
0.24 0.48 1.02 �0.09 0.51 0.36

0.58 0.73 0.63 0.17 �0.90 �0.06
�0.11 0.11 0.20 �0.73 �1.00 �0.59
0.25 0.52 0.47 �0.44 �0.82 �0.35

�0.05 �0.13 �0.60 �0.89 �1.66 �0.62
�0.79 �0.80 �1.01 �1.44 �1.68 �1.08
�0.50 �0.40 �0.87 �1.24 �1.61 �0.89

�0.01 0.05 0.04 0.68 0.25 0.09
0.15 0.24 0.47 0.80 0.47 0.33
0.16 0.17 0.38 0.95 0.25 0.29

�0.38 �0.20 �0.05 �0.97 �0.72 �0.22
�1.09 �0.63 �0.88 �1.20 �1.15 �0.76
�0.92 �0.46 �0.78 �1.16 �0.88 �0.62

0.19 0.49 0.50 0.16 0.05 0.21
�0.18 0.18 �0.05 �0.24 �0.18 �0.25
�0.03 0.32 0.07 �0.12 �0.06 �0.21

�0.09 0.18 0.48 �0.45 �0.29 0.07
�0.32 �0.05 0.24 �0.69 �0.46 �0.17
�0.22 0.03 0.28 �0.66 �0.38 �0.12
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OC, and gas-phase O3, NO, NO2, and CO at 10 sites and the domain
average using all available measurements. There are no observa-
tions for gas species O3, NO, NO2, and CO at sites BODB and SEQU
and so the measurements from nearby sites (SRF and VCS) are used
instead. Model calculations driven by the diagnostic meteorology
tend to over-predict PM species except OC. FDDA prognostic
meteorology yields excellent predictions for N(V) and total PM2.5
mass, but under-predicts all other species except S(VI) and O3.
Model calculations driven by WRF prognostic meteorology under-
predict all species except S(VI) and O3 at most of the sites due to
higher wind speeds and mixing depths. OC is consistently under-
predicted atmost of the sites by a factor of 2 ormore,with an overall
MFB �0.62 to �1.08. O3 concentrations during this cold winter
episode were controlled by transport of background ozone to the
surface, followed by dry deposition and chemical losses. Therefore,
WRF and FDDA prognostic meteorology fields yield higher ground-
level O3 concentrations than the diagnostic fields due to strong
mixing among vertical layers which transports the background O3
from upper layers to the surface. WRF and FDDA prognostic NO
concentrations are also significantly under-predicted with an
overall MFB of �0.90 and �0.88, respectively. Along with increased
dilution due to high wind speeds and mixing depth, prognostic NO
is also consumed by higher ground-level O3 concentrations via
titration. Overall, the diagnostic meteorology leads to better
agreement with the observed concentrations, with most of the
overall MFB less than 0.3; WRF meteorology yields lower concen-
trations, but nudging with observed meteorology improves the
model predictions, even though FDDA still yields relatively large
bias for certain species. Additional analysis of the diagnostic model
predictions has been provided by Ying et al. (2008).
Table 3
Mean fractional errors of PM and gas species.

SITE ANGI BAC BTI FSF SNFH

PM2.5 DIA 0.63 0.57 0.58 0.50 0.91
WRF 0.68 0.67 0.62 0.43 0.89
FDDA 0.57 0.61 0.47 0.38 0.74

N(V) DIA 0.83 0.53 1.04 0.41 1.07
WRF 0.62 0.92 0.85 0.48 0.89
FDDA 0.61 0.62 0.94 0.39 0.67

N(�III) DIA 0.76 0.52 0.72 0.62 0.71
WRF 1.17 0.81 0.66 1.01 0.66
FDDA 0.88 0.67 0.65 0.75 0.46

S(VI) DIA 0.51 0.66 0.88 0.69 0.59
WRF 0.46 0.43 0.80 0.43 0.57
FDDA 0.43 0.48 0.90 0.48 0.59

EC DIA 0.50 0.52 0.51 0.37 0.78
WRF 0.69 0.82 0.72 0.76 0.85
FDDA 0.52 0.78 0.56 0.60 0.75

OC DIA 0.93 0.63 0.45 0.49 1.28
WRF 1.21 0.76 0.82 0.86 1.36
FDDA 1.10 0.82 0.58 0.70 1.29

O3 DIA 0.67 0.57 0.67 0.59 0.33
WRF 0.71 0.60 0.71 0.71 0.40
FDDA 0.74 0.64 0.68 0.60 0.37

NO DIA 1.15 0.62 0.86 0.67 0.61
WRF 1.48 0.96 1.11 0.97 0.08
FDDA 1.25 0.89 0.97 0.81 0.40

NO2 DIA 0.66 0.47 0.46 0.41 0.97
WRF 0.70 0.54 0.64 0.37 1.02
FDDA 0.63 0.52 0.53 0.39 0.90

CO DIA e 0.42 0.28 0.40 e

WRF e 0.58 0.33 0.55 e

FDDA e 0.58 0.26 0.51 e

a Site SRF for gas species, 33.9 km to BODB.
b Site VCS for gas species, 44.7 km to SEQU.
While MFB quantifies the average tendency of model predic-
tions, mean fraction error (MFE) illustrates the average difference
between the model predictions and the measured concentrations.
Table 3 summarizes the MFE calculated for the six PM and four gas-
phase species. Prognostic and diagnostic MFE values are not
statistically different, indicating that the prognostic model predic-
tions are as good as the diagnostic predictions in terms of the
absolute difference between the predictions and the observations
(Table 3). Boylan and Russell (2006) recommended performance
criteria of �0.60 for MFB and 0.75 for MFE for PM modeling when
the observed concentrations are above 2.25 mg m�3. The current
model applications meet these criteria for hourly PM2.5 and all its
components except for OC. These results are consistent with Pun
et al. (2009).

Fig. 5(a) and (b) illustrates the overall MFB calculated for the SJV
and the entire modeling domain, respectively. In the SJV, the UCD/
CIT model with the diagnostic meteorology slightly over-predicts
concentrations of all species except for O3, N(�III), EC and OC, while
the samemodel usingWRF prognostic meteorology tends to under-
predict all species except for O3 and S(VI). WRF under-predictions
are largest for OC, EC and NO.WRF-FDDAmeteorology improves air
quality model predictions for almost all species. Average trends
across the entire modeling domain are similar to those observed in
the SJV, but the magnitude of the MFB is reduced. For example, the
MFB of the WRF prognostic N(V) and N(�III) averaged across the
entire domain are �0.30 and �0.38, respectively; while in the SJV,
they are �0.49 and �0.73, respectively. The greater under-predic-
tion of WRF prognostic N(V) and N(�III) in the SJV reflects the
influence of high wind speeds in the prognostic meteorology that
transports the pollutants out of the valley.
M14 SDP DAV BODBa SEQUb OVERALL

e 0.55 e e e 0.62
e 0.66 e e e 0.65
e 0.52 e e e 0.54

0.72 0.70 0.74 0.82 1.08 0.70
0.78 1.10 1.22 0.78 0.93 0.79
0.64 0.58 1.07 0.77 0.86 0.68

0.67 0.71 0.41 1.20 0.41 0.70
0.76 0.89 0.86 1.16 0.48 0.84
0.59 0.52 0.59 1.11 0.49 0.69

0.60 0.54 0.96 0.43 0.56 0.62
0.49 0.46 0.94 0.46 0.54 0.53
0.54 0.50 1.03 0.48 0.56 0.57

0.78 0.81 0.68 0.72 0.68 0.66
0.62 0.78 0.46 1.16 0.98 0.81
0.66 0.75 0.53 0.85 0.87 0.70

0.47 0.57 0.61 0.89 1.66 0.85
0.84 0.93 1.01 1.44 1.68 1.12
0.61 0.63 0.87 1.24 1.61 0.98

0.57 0.57 0.54 1.06 0.51 0.69
0.76 0.68 0.73 1.10 0.75 0.72
0.69 0.61 0.61 1.14 0.59 0.69

0.84 0.75 0.77 1.18 0.93 0.93
1.18 0.95 1.23 1.30 1.22 1.13
1.04 0.82 1.03 1.25 1.03 1.04

0.41 0.52 0.59 0.50 0.48 0.64
0.46 0.47 0.65 0.53 0.45 0.71
0.40 0.44 0.51 0.53 0.43 0.68

0.65 0.63 0.53 0.53 0.47 0.52
0.66 0.68 0.46 0.73 0.51 0.57
0.62 0.66 0.43 0.70 0.47 0.55



J. Hu et al. / Atmospheric Environment 44 (2010) 215e226 223
Fig. 6 compares the concentrations of (1) diagnostic, (2) WRF,
and (3) FDDA prognostic (A) PM2.5, (B) N(V), (C) N(�III), (D) S(VI),
(E) EC, and (F) OC averaged over the entire episode. All three
predictions exhibit a similar spatial distribution of PM species, with
high concentrations throughout the SJV, especially at the cells
around urban area (e.g., Bakersfield, Fresno, etc.). The diagnostic
meteorology yields the highest PM2.5 concentration, while theWRF
prognostic meteorology generates the lowest PM2.5 concentration
throughout the domain, mainly due to the effects of higher wind
speeds and larger mixing depth in prognostic meteorology fields.
The FDDA meteorology predicts a median concentration of PM2.5,
reflecting the influence of observed wind speeds on the model
predictions. Trends in predicted N(V), N(�III), S(VI), EC, and OC
concentrations illustrate the same effects.

Airborne PM has been identified as a significant threat to public
health. Exposure assessment to ambient PM is essential for policy
makers to develop appropriate and efficient risk reduction
measures. Population-weighted exposure (PWE) can be used to
estimate the average PM exposure in a study region. PWE is
calculated as follows:

PWE ¼

P

i
Ci � Pi
P

i
Pi

(1)

where i is the grid point, Ci is the concentration and Pi the pop-
ulation density in grid cell i. Fig. 7 shows the estimated PWE to
PM2.5 mass and its components in the SJV based on the concen-
trations predicted using the three sets of meteorological fields.
Predicted PWE to PM2.5 mass is 52, 40, and 32 mg m�3 when using
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Fig. 5. Overall mean fractional bias calculated using all available observations for PM and g
standard deviations of MFBs.
the DIA and WRF-FDDA, and WRF meteorological fields, respec-
tively. The DIA andWRF-FDDA predictions suggest that the average
person in the SJV experiences concentrations in excess of the 24-h
average PM2.5 National Ambient Air Quality Standard (NAAQS) of
35 mg m�3. In contrast, the air quality predictions made using the
WRF meteorological fields do not result in PWE greater than the
PM2.5 NAAQS. It is expected that the diagnostic results are most
accurate for sub-regions that contain the greatest number of
meteorological measurements. This usually corresponds to urban
areas that also experience the highest pollutant exposures. Diag-
nostic models are therefore weighted towards maximum accuracy
in the most highly populated regions.
5. Sensitivity analysis

Different data products can be used for FDDA leading to
different WRF predictions. In the present study, a sensitivity check
was conducted using the 32 km North American Regional Rean-
alysis (NARR) dataset for WRF FDDA. The average surface temper-
ature, relative humidity, U wind velocity, and V wind velocity in the
SJV changed by 10.3%, �1.1%, �3.4%, and 5.7%, respectively,
compared to the corresponding values produced using NCAR global
reanalysis data. The population-weighted average exposure to total
PM2.5 changed by only þ0.5 mg m�3 (þ1.2%) when NARR data was
used, emphasizing the fact that the choice of the dataset used for
WRF FDDA does not explain the large difference between the
diagnostic and prognostic pollution predictions in the current
study. We believe that the fundamental failure to predict the severe
wind shear that was observed during the winter stagnation events
 SJV domain
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M2.5

N(V) N(-III) S(VI) EC OC
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FDDA

e modeling domain
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as species in (a) the SJV and (b) the entire modeling domain. Error bars represent the



Fig. 6. Comparison of (A) PM2.5, (B) N(V), (C) N(�III), (D) S(VI), (E) EC, and (F) OC predicted with (1) diagnostic (DIA), (2) WRF-simulated (WRF), and (3) WRF-simulated with FDDA
(FDDA) meteorological fields. All concentrations are expressed as % of the maximum value shown in each sub-panel. Absolute units are ppb for gas species and mg m�3 for PM
species. The % scale is shown in the domain sub-panel (upper right corner) along with the active computational region (light yellow line) and the SJV (dark blue line). The dots
represent the air quality sites used to evaluate model performance.
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in California is a shortcoming of the WRF model itself, not the
datasets used to drive the WRF model.

The nudging coefficients used with FDDA also affect the WRF
meteorological fields and consequently the air quality predictions.
Choi et al. (2009) studied the impact of the nudging coefficient on
MM5 meteorological fields and ozone predictions, and found that
larger nudging coefficients improve the model performance under
asynoptic conditions but had little effect under synoptic conditions.
A sensitivity test was conducted using a larger WRF-FDDA nudging
coefficient of 8 � 10�4 s�1 (vs. the base-case value of 6 � 10�4 s�1)
in the current study. The average temperature, relative humidity, U
wind speed and Vwind speed predicted in the SJV changed by 1.0%,
�0.3%, �3.4%, and 2.9%, respectively, compared to the base-case
FDDA results. Population-weighted average exposure to total PM2.5
in the SJV decreased by 0.7 mgm�3 (�1.7%) when the larger nudging
factor was used. Once again, this change is small relative to the
differences between the diagnostic and prognostic simulations in
the current study.
6. Conclusions

The UCD/CIT air quality model was applied with three sets of
meteorological fields to produce three sets of predictions for air
pollutant concentrations during the CRPAQS 2000 winter episode
in the San Joaquin Valley. The first set of meteorological fields was
generated using a diagnostic model based onmeasured parameters
combined with an objective analysis method. The second set of
meteorological inputs was generated using WRF V2.2 prognostic
model (no data nudging), and the third set was generated using
WRF model with the FDDA technique. Statistical analysis of the
predicted and measured meteorological time series shows that the
WRF prognostic model does not accurately simulate stagnant
wintertime meteorological temperature and wind fields in central
California unless it is applied with FDDA. The combination of WRF-
FDDA fields with air quality calculations improves air quality
predictions during this episode. Diagnostic meteorological fields
produced more accurate air quality predictions than prognostic
fields overall during stagnant winter conditions. The overall MFB
values of all pollutants produced by the diagnostic meteorological
fields are within �0.3, except for S(VI) MFB ¼ 0.48 and OC
MFB ¼ �0.62. Population-weighted average PM2.5 exposure is 40%
higher using diagnostic meteorological fields compared to prog-
nostic meteorological fields created without data assimilation. The
results indicate that meteorological fields generated by diagnostic
methods based on a dense measurement network are the preferred
choice for air quality model studies during stagnant periods in
locations with complex topography such as California. Improve-
ments to prognostic meteorological models, especially a better
description of nocturnal ground-level inversions and small-scale
dynamics (e.g., landesea breezes and orographical winds), are
needed to generate more accurate meteorological fields under
these conditions.
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